summaryrefslogtreecommitdiffstats
path: root/apps/eq.c
diff options
context:
space:
mode:
authorMaurus Cuelenaere <mcuelenaere@gmail.com>2009-07-05 18:06:07 +0000
committerMaurus Cuelenaere <mcuelenaere@gmail.com>2009-07-05 18:06:07 +0000
commit802743a061e01150db544c8e072cd794731b18a7 (patch)
tree311abcc9e51973907899a4585dd0e3a2a31572eb /apps/eq.c
parent427bf0b8936f2654fe79e8c5864918530b8838dd (diff)
downloadrockbox-802743a061e01150db544c8e072cd794731b18a7.tar.gz
rockbox-802743a061e01150db544c8e072cd794731b18a7.zip
Take 2 at 'Consolidate all fixed point math routines in one library' (FS#10400) by Jeffrey Goode
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21664 a1c6a512-1295-4272-9138-f99709370657
Diffstat (limited to 'apps/eq.c')
-rw-r--r--apps/eq.c120
1 files changed, 13 insertions, 107 deletions
diff --git a/apps/eq.c b/apps/eq.c
index 5977200c9c..6437fed906 100644
--- a/apps/eq.c
+++ b/apps/eq.c
@@ -21,105 +21,11 @@
#include <inttypes.h>
#include "config.h"
-#include "dsp.h"
+#include "fixedpoint.h"
+#include "fracmul.h"
#include "eq.h"
#include "replaygain.h"
-/* Inverse gain of circular cordic rotation in s0.31 format. */
-static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
-
-/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
-static const unsigned long atan_table[] = {
- 0x1fffffff, /* +0.785398163 (or pi/4) */
- 0x12e4051d, /* +0.463647609 */
- 0x09fb385b, /* +0.244978663 */
- 0x051111d4, /* +0.124354995 */
- 0x028b0d43, /* +0.062418810 */
- 0x0145d7e1, /* +0.031239833 */
- 0x00a2f61e, /* +0.015623729 */
- 0x00517c55, /* +0.007812341 */
- 0x0028be53, /* +0.003906230 */
- 0x00145f2e, /* +0.001953123 */
- 0x000a2f98, /* +0.000976562 */
- 0x000517cc, /* +0.000488281 */
- 0x00028be6, /* +0.000244141 */
- 0x000145f3, /* +0.000122070 */
- 0x0000a2f9, /* +0.000061035 */
- 0x0000517c, /* +0.000030518 */
- 0x000028be, /* +0.000015259 */
- 0x0000145f, /* +0.000007629 */
- 0x00000a2f, /* +0.000003815 */
- 0x00000517, /* +0.000001907 */
- 0x0000028b, /* +0.000000954 */
- 0x00000145, /* +0.000000477 */
- 0x000000a2, /* +0.000000238 */
- 0x00000051, /* +0.000000119 */
- 0x00000028, /* +0.000000060 */
- 0x00000014, /* +0.000000030 */
- 0x0000000a, /* +0.000000015 */
- 0x00000005, /* +0.000000007 */
- 0x00000002, /* +0.000000004 */
- 0x00000001, /* +0.000000002 */
- 0x00000000, /* +0.000000001 */
- 0x00000000, /* +0.000000000 */
-};
-
-/**
- * Implements sin and cos using CORDIC rotation.
- *
- * @param phase has range from 0 to 0xffffffff, representing 0 and
- * 2*pi respectively.
- * @param cos return address for cos
- * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
- * representing -1 and 1 respectively.
- */
-static long fsincos(unsigned long phase, long *cos) {
- int32_t x, x1, y, y1;
- unsigned long z, z1;
- int i;
-
- /* Setup initial vector */
- x = cordic_circular_gain;
- y = 0;
- z = phase;
-
- /* The phase has to be somewhere between 0..pi for this to work right */
- if (z < 0xffffffff / 4) {
- /* z in first quadrant, z += pi/2 to correct */
- x = -x;
- z += 0xffffffff / 4;
- } else if (z < 3 * (0xffffffff / 4)) {
- /* z in third quadrant, z -= pi/2 to correct */
- z -= 0xffffffff / 4;
- } else {
- /* z in fourth quadrant, z -= 3pi/2 to correct */
- x = -x;
- z -= 3 * (0xffffffff / 4);
- }
-
- /* Each iteration adds roughly 1-bit of extra precision */
- for (i = 0; i < 31; i++) {
- x1 = x >> i;
- y1 = y >> i;
- z1 = atan_table[i];
-
- /* Decided which direction to rotate vector. Pivot point is pi/2 */
- if (z >= 0xffffffff / 4) {
- x -= y1;
- y += x1;
- z -= z1;
- } else {
- x += y1;
- y -= x1;
- z += z1;
- }
- }
-
- *cos = x;
-
- return y;
-}
-
/**
* Calculate first order shelving filter. Filter is not directly usable by the
* eq_filter() function.
@@ -135,16 +41,16 @@ void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c)
int32_t b0, b1, a0, a1; /* s3.28 */
const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */
- sin = fsincos(cutoff/2, &cos);
+ sin = fp_sincos(cutoff/2, &cos);
if (low) {
- const int32_t sin_div_g = DIV64(sin, g, 25);
+ const int32_t sin_div_g = fp_div(sin, g, 25);
cos >>= 3;
b0 = FRACMUL(sin, g) + cos; /* 0.25 .. 4.10 */
b1 = FRACMUL(sin, g) - cos; /* -1 .. 3.98 */
a0 = sin_div_g + cos; /* 0.25 .. 4.10 */
a1 = sin_div_g - cos; /* -1 .. 3.98 */
} else {
- const int32_t cos_div_g = DIV64(cos, g, 25);
+ const int32_t cos_div_g = fp_div(cos, g, 25);
sin >>= 3;
b0 = sin + FRACMUL(cos, g); /* 0.25 .. 4.10 */
b1 = sin - FRACMUL(cos, g); /* -3.98 .. 1 */
@@ -152,7 +58,7 @@ void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c)
a1 = sin - cos_div_g; /* -3.98 .. 1 */
}
- const int32_t rcp_a0 = DIV64(1, a0, 57); /* 0.24 .. 3.98, s2.29 */
+ const int32_t rcp_a0 = fp_div(1, a0, 57); /* 0.24 .. 3.98, s2.29 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */
*c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */
*c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */
@@ -220,10 +126,10 @@ void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
long cs;
const long one = 1 << 28; /* s3.28 */
const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */
- const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
+ const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
int32_t a0, a1, a2; /* these are all s3.28 format */
int32_t b0, b1, b2;
- const long alphadivA = DIV64(alpha, A, 27);
+ const long alphadivA = fp_div(alpha, A, 27);
/* possible numerical ranges are in comments by each coef */
b0 = one + FRACMUL(alpha, A); /* [1 .. 5] */
@@ -233,7 +139,7 @@ void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
a2 = one - alphadivA; /* [-3 .. 1] */
/* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */
- const long rcp_a0 = DIV64(1, a0, 59); /* s0.31 */
+ const long rcp_a0 = fp_div(1, a0, 59); /* s0.31 */
*c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */
*c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */
*c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */
@@ -251,7 +157,7 @@ void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
const long one = 1 << 25; /* s6.25 */
const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */
const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */
- const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
+ const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
const long ap1 = (A >> 4) + one;
const long am1 = (A >> 4) - one;
const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha);
@@ -272,7 +178,7 @@ void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha;
/* [0.1 .. 1.99] */
- const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */
+ const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */
*c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */
*c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */
@@ -290,7 +196,7 @@ void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
const long one = 1 << 25; /* s6.25 */
const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */
const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */
- const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
+ const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
const long ap1 = (A >> 4) + one;
const long am1 = (A >> 4) - one;
const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha);
@@ -311,7 +217,7 @@ void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha;
/* [0.1 .. 1.99] */
- const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */
+ const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */
*c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */
*c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */