diff options
author | Maurus Cuelenaere <mcuelenaere@gmail.com> | 2009-07-04 13:17:58 +0000 |
---|---|---|
committer | Maurus Cuelenaere <mcuelenaere@gmail.com> | 2009-07-04 13:17:58 +0000 |
commit | c3bc8fda8019c69c1bf9cd74539df07db527eebc (patch) | |
tree | 7bab3843bfe24cbdbb5153baba12827bcd755a72 /apps/fixedpoint.c | |
parent | 861b8d8606059de2f7527e9429dc109e8b89c03c (diff) | |
download | rockbox-c3bc8fda8019c69c1bf9cd74539df07db527eebc.tar.gz rockbox-c3bc8fda8019c69c1bf9cd74539df07db527eebc.zip |
Revert "Consolidate all fixed point math routines in one library (FS#10400) by Jeffrey Goode"
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21635 a1c6a512-1295-4272-9138-f99709370657
Diffstat (limited to 'apps/fixedpoint.c')
-rw-r--r-- | apps/fixedpoint.c | 440 |
1 files changed, 0 insertions, 440 deletions
diff --git a/apps/fixedpoint.c b/apps/fixedpoint.c deleted file mode 100644 index 7738dc123e..0000000000 --- a/apps/fixedpoint.c +++ /dev/null @@ -1,440 +0,0 @@ -/*************************************************************************** - * __________ __ ___. - * Open \______ \ ____ ____ | | _\_ |__ _______ ___ - * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / - * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < - * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ - * \/ \/ \/ \/ \/ - * $Id$ - * - * Copyright (C) 2006 Jens Arnold - * - * Fixed point library for plugins - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY - * KIND, either express or implied. - * - ****************************************************************************/ - -#include "fixedpoint.h" -#include <stdlib.h> -#include <stdbool.h> - -#ifndef BIT_N -#define BIT_N(n) (1U << (n)) -#endif - -/** TAKEN FROM ORIGINAL fixedpoint.h */ -/* Inverse gain of circular cordic rotation in s0.31 format. */ -static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ - -/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ -static const unsigned long atan_table[] = { - 0x1fffffff, /* +0.785398163 (or pi/4) */ - 0x12e4051d, /* +0.463647609 */ - 0x09fb385b, /* +0.244978663 */ - 0x051111d4, /* +0.124354995 */ - 0x028b0d43, /* +0.062418810 */ - 0x0145d7e1, /* +0.031239833 */ - 0x00a2f61e, /* +0.015623729 */ - 0x00517c55, /* +0.007812341 */ - 0x0028be53, /* +0.003906230 */ - 0x00145f2e, /* +0.001953123 */ - 0x000a2f98, /* +0.000976562 */ - 0x000517cc, /* +0.000488281 */ - 0x00028be6, /* +0.000244141 */ - 0x000145f3, /* +0.000122070 */ - 0x0000a2f9, /* +0.000061035 */ - 0x0000517c, /* +0.000030518 */ - 0x000028be, /* +0.000015259 */ - 0x0000145f, /* +0.000007629 */ - 0x00000a2f, /* +0.000003815 */ - 0x00000517, /* +0.000001907 */ - 0x0000028b, /* +0.000000954 */ - 0x00000145, /* +0.000000477 */ - 0x000000a2, /* +0.000000238 */ - 0x00000051, /* +0.000000119 */ - 0x00000028, /* +0.000000060 */ - 0x00000014, /* +0.000000030 */ - 0x0000000a, /* +0.000000015 */ - 0x00000005, /* +0.000000007 */ - 0x00000002, /* +0.000000004 */ - 0x00000001, /* +0.000000002 */ - 0x00000000, /* +0.000000001 */ - 0x00000000, /* +0.000000000 */ -}; - -/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */ -static const short sin_table[91] = -{ - 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, - 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, - 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, - 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, - 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, - 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, - 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, - 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, - 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, - 16384 -}; - -/** - * Implements sin and cos using CORDIC rotation. - * - * @param phase has range from 0 to 0xffffffff, representing 0 and - * 2*pi respectively. - * @param cos return address for cos - * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, - * representing -1 and 1 respectively. - */ -long fsincos(unsigned long phase, long *cos) -{ - int32_t x, x1, y, y1; - unsigned long z, z1; - int i; - - /* Setup initial vector */ - x = cordic_circular_gain; - y = 0; - z = phase; - - /* The phase has to be somewhere between 0..pi for this to work right */ - if (z < 0xffffffff / 4) { - /* z in first quadrant, z += pi/2 to correct */ - x = -x; - z += 0xffffffff / 4; - } else if (z < 3 * (0xffffffff / 4)) { - /* z in third quadrant, z -= pi/2 to correct */ - z -= 0xffffffff / 4; - } else { - /* z in fourth quadrant, z -= 3pi/2 to correct */ - x = -x; - z -= 3 * (0xffffffff / 4); - } - - /* Each iteration adds roughly 1-bit of extra precision */ - for (i = 0; i < 31; i++) { - x1 = x >> i; - y1 = y >> i; - z1 = atan_table[i]; - - /* Decided which direction to rotate vector. Pivot point is pi/2 */ - if (z >= 0xffffffff / 4) { - x -= y1; - y += x1; - z -= z1; - } else { - x += y1; - y -= x1; - z += z1; - } - } - - if (cos) - *cos = x; - - return y; -} - -/** - * Fixed point square root via Newton-Raphson. - * @param x square root argument. - * @param fracbits specifies number of fractional bits in argument. - * @return Square root of argument in same fixed point format as input. - * - * This routine has been modified to run longer for greater precision, - * but cuts calculation short if the answer is reached sooner. In - * general, the closer x is to 1, the quicker the calculation. - */ -long fsqrt(long x, unsigned int fracbits) -{ - long b = x/2 + BIT_N(fracbits); /* initial approximation */ - long c; - unsigned n; - const unsigned iterations = 8; - - for (n = 0; n < iterations; ++n) - { - c = DIV64(x, b, fracbits); - if (c == b) break; - b = (b + c)/2; - } - - return b; -} - -/** - * Fixed point sinus using a lookup table - * don't forget to divide the result by 16384 to get the actual sinus value - * @param val sinus argument in degree - * @return sin(val)*16384 - */ -long sin_int(int val) -{ - val = (val+360)%360; - if (val < 181) - { - if (val < 91)/* phase 0-90 degree */ - return (long)sin_table[val]; - else/* phase 91-180 degree */ - return (long)sin_table[180-val]; - } - else - { - if (val < 271)/* phase 181-270 degree */ - return -(long)sin_table[val-180]; - else/* phase 270-359 degree */ - return -(long)sin_table[360-val]; - } - return 0; -} - -/** - * Fixed point cosinus using a lookup table - * don't forget to divide the result by 16384 to get the actual cosinus value - * @param val sinus argument in degree - * @return cos(val)*16384 - */ -long cos_int(int val) -{ - val = (val+360)%360; - if (val < 181) - { - if (val < 91)/* phase 0-90 degree */ - return (long)sin_table[90-val]; - else/* phase 91-180 degree */ - return -(long)sin_table[val-90]; - } - else - { - if (val < 271)/* phase 181-270 degree */ - return -(long)sin_table[270-val]; - else/* phase 270-359 degree */ - return (long)sin_table[val-270]; - } - return 0; -} - -/** - * Fixed-point natural log - * taken from http://www.quinapalus.com/efunc.html - * "The code assumes integers are at least 32 bits long. The (positive) - * argument and the result of the function are both expressed as fixed-point - * values with 16 fractional bits, although intermediates are kept with 28 - * bits of precision to avoid loss of accuracy during shifts." - */ - -long flog(int x) { - long t,y; - - y=0xa65af; - if(x<0x00008000) x<<=16, y-=0xb1721; - if(x<0x00800000) x<<= 8, y-=0x58b91; - if(x<0x08000000) x<<= 4, y-=0x2c5c8; - if(x<0x20000000) x<<= 2, y-=0x162e4; - if(x<0x40000000) x<<= 1, y-=0x0b172; - t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd; - t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920; - t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27; - t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85; - t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1; - t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8; - t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe; - x=0x80000000-x; - y-=x>>15; - return y; -} - -/** MODIFIED FROM replaygain.c */ -/* These math routines have 64-bit internal precision to avoid overflows. - * Arguments and return values are 32-bit (long) precision. - */ - -#define FP_MUL64(x, y) (((x) * (y)) >> (fracbits)) -#define FP_DIV64(x, y) (((x) << (fracbits)) / (y)) - -static long long fp_exp10(long long x, unsigned int fracbits); -static long long fp_log10(long long n, unsigned int fracbits); - -/* constants in fixed point format, 28 fractional bits */ -#define FP28_LN2 (186065279LL) /* ln(2) */ -#define FP28_LN2_INV (387270501LL) /* 1/ln(2) */ -#define FP28_EXP_ZERO (44739243LL) /* 1/6 */ -#define FP28_EXP_ONE (-745654LL) /* -1/360 */ -#define FP28_EXP_TWO (12428LL) /* 1/21600 */ -#define FP28_LN10 (618095479LL) /* ln(10) */ -#define FP28_LOG10OF2 (80807124LL) /* log10(2) */ - -#define TOL_BITS 2 /* log calculation tolerance */ - - -/* The fpexp10 fixed point math routine is based - * on oMathFP by Dan Carter (http://orbisstudios.com). - */ - -/** FIXED POINT EXP10 - * Return 10^x as FP integer. Argument is FP integer. - */ -static long long fp_exp10(long long x, unsigned int fracbits) -{ - long long k; - long long z; - long long R; - long long xp; - - /* scale constants */ - const long long fp_one = (1 << fracbits); - const long long fp_half = (1 << (fracbits - 1)); - const long long fp_two = (2 << fracbits); - const long long fp_mask = (fp_one - 1); - const long long fp_ln2_inv = (FP28_LN2_INV >> (28 - fracbits)); - const long long fp_ln2 = (FP28_LN2 >> (28 - fracbits)); - const long long fp_ln10 = (FP28_LN10 >> (28 - fracbits)); - const long long fp_exp_zero = (FP28_EXP_ZERO >> (28 - fracbits)); - const long long fp_exp_one = (FP28_EXP_ONE >> (28 - fracbits)); - const long long fp_exp_two = (FP28_EXP_TWO >> (28 - fracbits)); - - /* exp(0) = 1 */ - if (x == 0) - { - return fp_one; - } - - /* convert from base 10 to base e */ - x = FP_MUL64(x, fp_ln10); - - /* calculate exp(x) */ - k = (FP_MUL64(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask; - - if (x < 0) - { - k = -k; - } - - x -= FP_MUL64(k, fp_ln2); - z = FP_MUL64(x, x); - R = fp_two + FP_MUL64(z, fp_exp_zero + FP_MUL64(z, fp_exp_one - + FP_MUL64(z, fp_exp_two))); - xp = fp_one + FP_DIV64(FP_MUL64(fp_two, x), R - x); - - if (k < 0) - { - k = fp_one >> (-k >> fracbits); - } - else - { - k = fp_one << (k >> fracbits); - } - - return FP_MUL64(k, xp); -} - - -/** FIXED POINT LOG10 - * Return log10(x) as FP integer. Argument is FP integer. - */ -static long long fp_log10(long long n, unsigned int fracbits) -{ - /* Calculate log2 of argument */ - - long long log2, frac; - const long long fp_one = (1 << fracbits); - const long long fp_two = (2 << fracbits); - const long tolerance = (1 << ((fracbits / 2) + 2)); - - if (n <=0) return FP_NEGINF; - log2 = 0; - - /* integer part */ - while (n < fp_one) - { - log2 -= fp_one; - n <<= 1; - } - while (n >= fp_two) - { - log2 += fp_one; - n >>= 1; - } - - /* fractional part */ - frac = fp_one; - while (frac > tolerance) - { - frac >>= 1; - n = FP_MUL64(n, n); - if (n >= fp_two) - { - n >>= 1; - log2 += frac; - } - } - - /* convert log2 to log10 */ - return FP_MUL64(log2, (FP28_LOG10OF2 >> (28 - fracbits))); -} - - -/** CONVERT FACTOR TO DECIBELS */ -long fp_decibels(unsigned long factor, unsigned int fracbits) -{ - long long decibels; - long long f = (long long)factor; - bool neg; - - /* keep factor in signed long range */ - if (f >= (1LL << 31)) - f = (1LL << 31) - 1; - - /* decibels = 20 * log10(factor) */ - decibels = FP_MUL64((20LL << fracbits), fp_log10(f, fracbits)); - - /* keep result in signed long range */ - if ((neg = (decibels < 0))) - decibels = -decibels; - if (decibels >= (1LL << 31)) - return neg ? FP_NEGINF : FP_INF; - - return neg ? (long)-decibels : (long)decibels; -} - - -/** CONVERT DECIBELS TO FACTOR */ -long fp_factor(long decibels, unsigned int fracbits) -{ - bool neg; - long long factor; - long long db = (long long)decibels; - - /* if decibels is 0, factor is 1 */ - if (db == 0) - return (1L << fracbits); - - /* calculate for positive decibels only */ - if ((neg = (db < 0))) - db = -db; - - /* factor = 10 ^ (decibels / 20) */ - factor = fp_exp10(FP_DIV64(db, (20LL << fracbits)), fracbits); - - /* keep result in signed long range, return 0 if very small */ - if (factor >= (1LL << 31)) - { - if (neg) - return 0; - else - return FP_INF; - } - - /* if negative argument, factor is 1 / result */ - if (neg) - factor = FP_DIV64((1LL << fracbits), factor); - - return (long)factor; -} |