summaryrefslogtreecommitdiffstats
path: root/apps/codecs/libfaad/sbr_hfgen.c
diff options
context:
space:
mode:
Diffstat (limited to 'apps/codecs/libfaad/sbr_hfgen.c')
-rw-r--r--apps/codecs/libfaad/sbr_hfgen.c539
1 files changed, 0 insertions, 539 deletions
diff --git a/apps/codecs/libfaad/sbr_hfgen.c b/apps/codecs/libfaad/sbr_hfgen.c
deleted file mode 100644
index 3a5b250aa7..0000000000
--- a/apps/codecs/libfaad/sbr_hfgen.c
+++ /dev/null
@@ -1,539 +0,0 @@
-/*
-** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
-** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
-**
-** This program is free software; you can redistribute it and/or modify
-** it under the terms of the GNU General Public License as published by
-** the Free Software Foundation; either version 2 of the License, or
-** (at your option) any later version.
-**
-** This program is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU General Public License for more details.
-**
-** You should have received a copy of the GNU General Public License
-** along with this program; if not, write to the Free Software
-** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-**
-** Any non-GPL usage of this software or parts of this software is strictly
-** forbidden.
-**
-** Commercial non-GPL licensing of this software is possible.
-** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
-**
-** $Id$
-**/
-
-/* High Frequency generation */
-
-#include "common.h"
-#include "structs.h"
-
-#ifdef SBR_DEC
-
-#include "sbr_syntax.h"
-#include "sbr_hfgen.h"
-#include "sbr_fbt.h"
-
-
-/* static function declarations */
-#ifdef SBR_LOW_POWER
-static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, real_t *rxx);
-static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg);
-#else
-static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, uint8_t k);
-#endif
-static void calc_chirp_factors(sbr_info *sbr, uint8_t ch);
-static void patch_construction(sbr_info *sbr);
-
-
-void hf_generation(sbr_info *sbr,
- qmf_t Xlow[MAX_NTSRHFG][64],
- qmf_t Xhigh[MAX_NTSRHFG][64]
-#ifdef SBR_LOW_POWER
- ,real_t *deg
-#endif
- ,uint8_t ch)
-{
- uint8_t l, i, x;
- complex_t alpha_0[64] MEM_ALIGN_ATTR;
- complex_t alpha_1[64] MEM_ALIGN_ATTR;
-#ifdef SBR_LOW_POWER
- real_t rxx[64];
-#endif
-
- uint8_t offset = sbr->tHFAdj;
- uint8_t first = sbr->t_E[ch][0];
- uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];
-
- calc_chirp_factors(sbr, ch);
-
-#ifdef SBR_LOW_POWER
- memset(deg, 0, 64*sizeof(real_t));
-#endif
-
- if ((ch == 0) && (sbr->Reset))
- patch_construction(sbr);
-
- /* calculate the prediction coefficients */
-#ifdef SBR_LOW_POWER
- calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);
- calc_aliasing_degree(sbr, rxx, deg);
-#endif
-
- /* actual HF generation */
- for (i = 0; i < sbr->noPatches; i++)
- {
- for (x = 0; x < sbr->patchNoSubbands[i]; x++)
- {
- real_t a0_r, a0_i, a1_r, a1_i;
- real_t bw, bw2;
- uint8_t q, p, k, g;
-
- /* find the low and high band for patching */
- k = sbr->kx + x;
- for (q = 0; q < i; q++)
- {
- k += sbr->patchNoSubbands[q];
- }
- p = sbr->patchStartSubband[i] + x;
-
-#ifdef SBR_LOW_POWER
- if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
- deg[k] = deg[p];
- else
- deg[k] = 0;
-#endif
-
- g = sbr->table_map_k_to_g[k];
-
- bw = sbr->bwArray[ch][g];
- bw2 = MUL_C(bw, bw);
-
- /* do the patching */
- /* with or without filtering */
- if (bw2 > 0)
- {
- real_t temp1_r, temp2_r, temp3_r;
-#ifndef SBR_LOW_POWER
- real_t temp1_i, temp2_i, temp3_i;
- calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);
-#endif
-
- a0_r = MUL_C(RE(alpha_0[p]), bw);
- a1_r = MUL_C(RE(alpha_1[p]), bw2);
-#ifndef SBR_LOW_POWER
- a0_i = MUL_C(IM(alpha_0[p]), bw);
- a1_i = MUL_C(IM(alpha_1[p]), bw2);
-#endif
-
- temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);
- temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);
-#ifndef SBR_LOW_POWER
- temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);
- temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);
-#endif
- for (l = first; l < last; l++)
- {
- temp1_r = temp2_r;
- temp2_r = temp3_r;
- temp3_r = QMF_RE(Xlow[l + offset][p]);
-#ifndef SBR_LOW_POWER
- temp1_i = temp2_i;
- temp2_i = temp3_i;
- temp3_i = QMF_IM(Xlow[l + offset][p]);
-#endif
-
-#ifdef SBR_LOW_POWER
- QMF_RE(Xhigh[l + offset][k]) = temp3_r +
- (MUL_R(a0_r, temp2_r) + MUL_R(a1_r, temp1_r));
-#else
- QMF_RE(Xhigh[l + offset][k]) = temp3_r +
- (MUL_R(a0_r, temp2_r) - MUL_R(a0_i, temp2_i) +
- MUL_R(a1_r, temp1_r) - MUL_R(a1_i, temp1_i));
- QMF_IM(Xhigh[l + offset][k]) = temp3_i +
- (MUL_R(a0_i, temp2_r) + MUL_R(a0_r, temp2_i) +
- MUL_R(a1_i, temp1_r) + MUL_R(a1_r, temp1_i));
-#endif
- }
- } else {
- for (l = first; l < last; l++)
- {
- QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
-#ifndef SBR_LOW_POWER
- QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
-#endif
- }
- }
- }
- }
-
- if (sbr->Reset)
- {
- limiter_frequency_table(sbr);
- }
-}
-
-typedef struct
-{
- complex_t r01;
- complex_t r02;
- complex_t r11;
- complex_t r12;
- complex_t r22;
- real_t det;
-} acorr_coef;
-
-/* Within auto_correlation(...) a pre-shift of >>ACDET_EXP is needed to avoid
- * overflow when multiply-adding the FRACT-variables -- FRACT part is 31 bits.
- * After the calculation has been finished the result 'ac->det' needs to be
- * post-shifted by <<(4*ACDET_EXP). This pre-/post-shifting is needed for
- * FIXED_POINT only. */
-#ifdef FIXED_POINT
-#define ACDET_EXP 3
-#define ACDET_PRE(A) (A)>>ACDET_EXP
-#define ACDET_POST(A) (A)<<(4*ACDET_EXP)
-#else
-#define ACDET_PRE(A) (A)
-#define ACDET_POST(A) (A)
-#endif
-
-#ifdef SBR_LOW_POWER
-static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
- qmf_t buffer[MAX_NTSRHFG][64],
- uint8_t bd, uint8_t len)
-{
- real_t r01 = 0, r02 = 0, r11 = 0;
- real_t tmp1, tmp2;
- int8_t j;
- uint8_t offset = sbr->tHFAdj;
- const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
-
- for (j = offset; j < len + offset; j++)
- {
- real_t buf_j = ACDET_PRE(QMF_RE(buffer[j ][bd]));
- real_t buf_j_1 = ACDET_PRE(QMF_RE(buffer[j-1][bd]));
- real_t buf_j_2 = ACDET_PRE(QMF_RE(buffer[j-2][bd]));
-
- r01 += MUL_F(buf_j , buf_j_1);
- r02 += MUL_F(buf_j , buf_j_2);
- r11 += MUL_F(buf_j_1, buf_j_1);
- }
- tmp1 = ACDET_PRE(QMF_RE(buffer[len+offset-1][bd]));
- tmp2 = ACDET_PRE(QMF_RE(buffer[ offset-1][bd]));
- RE(ac->r12) = r01 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2);
-
- tmp1 = ACDET_PRE(QMF_RE(buffer[len+offset-2][bd]));
- tmp2 = ACDET_PRE(QMF_RE(buffer[ offset-2][bd]));
- RE(ac->r22) = r11 - MUL_F(tmp1, tmp1) + MUL_F(tmp2, tmp2);
- RE(ac->r01) = r01;
- RE(ac->r02) = r02;
- RE(ac->r11) = r11;
-
- ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_F(RE(ac->r12), RE(ac->r12)), rel);
- ac->det = ACDET_POST(ac->det);
-}
-#else
-static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64],
- uint8_t bd, uint8_t len)
-{
- real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0;
- real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i;
- real_t temp4_r, temp4_i, temp5_r, temp5_i;
- int8_t j;
- uint8_t offset = sbr->tHFAdj;
- const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
-
- temp2_r = ACDET_PRE(QMF_RE(buffer[offset-2][bd]));
- temp2_i = ACDET_PRE(QMF_IM(buffer[offset-2][bd]));
- temp3_r = ACDET_PRE(QMF_RE(buffer[offset-1][bd]));
- temp3_i = ACDET_PRE(QMF_IM(buffer[offset-1][bd]));
- // Save these because they are needed after loop
- temp4_r = temp2_r;
- temp4_i = temp2_i;
- temp5_r = temp3_r;
- temp5_i = temp3_i;
-
- for (j = offset; j < len + offset; j++)
- {
- temp1_r = temp2_r;
- temp1_i = temp2_i;
- temp2_r = temp3_r;
- temp2_i = temp3_i;
- temp3_r = ACDET_PRE(QMF_RE(buffer[j][bd]));
- temp3_i = ACDET_PRE(QMF_IM(buffer[j][bd]));
- r01r += MUL_F(temp3_r, temp2_r) + MUL_F(temp3_i, temp2_i);
- r01i += MUL_F(temp3_i, temp2_r) - MUL_F(temp3_r, temp2_i);
- r02r += MUL_F(temp3_r, temp1_r) + MUL_F(temp3_i, temp1_i);
- r02i += MUL_F(temp3_i, temp1_r) - MUL_F(temp3_r, temp1_i);
- r11r += MUL_F(temp2_r, temp2_r) + MUL_F(temp2_i, temp2_i);
- }
-
- RE(ac->r12) = r01r - (MUL_F(temp3_r, temp2_r) + MUL_F(temp3_i, temp2_i)) +
- (MUL_F(temp5_r, temp4_r) + MUL_F(temp5_i, temp4_i));
- IM(ac->r12) = r01i - (MUL_F(temp3_i, temp2_r) - MUL_F(temp3_r, temp2_i)) +
- (MUL_F(temp5_i, temp4_r) - MUL_F(temp5_r, temp4_i));
- RE(ac->r22) = r11r - (MUL_F(temp2_r, temp2_r) + MUL_F(temp2_i, temp2_i)) +
- (MUL_F(temp4_r, temp4_r) + MUL_F(temp4_i, temp4_i));
- RE(ac->r01) = r01r;
- IM(ac->r01) = r01i;
- RE(ac->r02) = r02r;
- IM(ac->r02) = r02i;
- RE(ac->r11) = r11r;
-
- ac->det = MUL_F(RE(ac->r11), RE(ac->r22)) - MUL_F((MUL_F(RE(ac->r12), RE(ac->r12)) + MUL_F(IM(ac->r12), IM(ac->r12))), rel);
- ac->det = ACDET_POST(ac->det);
-
-}
-#endif
-
-/* calculate linear prediction coefficients using the covariance method */
-#ifndef SBR_LOW_POWER
-static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, uint8_t k)
-{
- real_t tmp, mul;
- acorr_coef ac;
-
- auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);
-
- if (ac.det == 0)
- {
- RE(alpha_1[k]) = 0;
- IM(alpha_1[k]) = 0;
- } else {
- mul = DIV_R(REAL_CONST(1.0), ac.det);
- tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)));
- RE(alpha_1[k]) = MUL_R(tmp, mul);
- tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11)));
- IM(alpha_1[k]) = MUL_R(tmp, mul);
- }
-
- if (RE(ac.r11) == 0)
- {
- RE(alpha_0[k]) = 0;
- IM(alpha_0[k]) = 0;
- } else {
- mul = DIV_R(REAL_CONST(1.0), RE(ac.r11));
- tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12)));
- RE(alpha_0[k]) = MUL_R(tmp, mul);
- tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12)));
- IM(alpha_0[k]) = MUL_R(tmp, mul);
- }
-
- if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) ||
- (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16)))
- {
- RE(alpha_0[k]) = 0;
- IM(alpha_0[k]) = 0;
- RE(alpha_1[k]) = 0;
- IM(alpha_1[k]) = 0;
- }
-}
-#else
-static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, real_t *rxx)
-{
- uint8_t k;
- real_t tmp, mul;
- acorr_coef ac;
-
- for (k = 1; k < sbr->f_master[0]; k++)
- {
- auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);
-
- if (ac.det == 0)
- {
- RE(alpha_0[k]) = 0;
- RE(alpha_1[k]) = 0;
- } else {
- mul = DIV_R(REAL_CONST(1.0), ac.det);
- tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02));
- RE(alpha_0[k]) = -MUL_R(tmp, mul);
- tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
- RE(alpha_1[k]) = MUL_R(tmp, mul);
- }
-
- if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
- {
- RE(alpha_0[k]) = REAL_CONST(0);
- RE(alpha_1[k]) = REAL_CONST(0);
- }
-
- /* reflection coefficient */
- if (RE(ac.r11) == 0)
- {
- rxx[k] = COEF_CONST(0.0);
- } else {
- rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11));
- rxx[k] = -rxx[k];
- if (rxx[k] > COEF_CONST( 1.0)) rxx[k] = COEF_CONST(1.0);
- if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0);
- }
- }
-}
-
-static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
-{
- uint8_t k;
-
- rxx[0] = COEF_CONST(0.0);
- deg[1] = COEF_CONST(0.0);
-
- for (k = 2; k < sbr->k0; k++)
- {
- deg[k] = COEF_CONST(0.0);
-
- if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0)))
- {
- if (rxx[k-1] < COEF_CONST(0.0))
- {
- deg[k] = COEF_CONST(1.0);
-
- if (rxx[k-2] > COEF_CONST(0.0))
- {
- deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- } else if (rxx[k-2] > COEF_CONST(0.0)) {
- deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- }
-
- if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0)))
- {
- if (rxx[k-1] > COEF_CONST(0.0))
- {
- deg[k] = COEF_CONST(1.0);
-
- if (rxx[k-2] < COEF_CONST(0.0))
- {
- deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- } else if (rxx[k-2] < COEF_CONST(0.0)) {
- deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- }
- }
-}
-#endif
-
-/* FIXED POINT: bwArray = COEF */
-static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev)
-{
- switch (invf_mode)
- {
- case 1: /* LOW */
- if (invf_mode_prev == 0) /* NONE */
- return COEF_CONST(0.6);
- else
- return COEF_CONST(0.75);
-
- case 2: /* MID */
- return COEF_CONST(0.9);
-
- case 3: /* HIGH */
- return COEF_CONST(0.98);
-
- default: /* NONE */
- if (invf_mode_prev == 1) /* LOW */
- return COEF_CONST(0.6);
- else
- return COEF_CONST(0.0);
- }
-}
-
-/* FIXED POINT: bwArray = COEF */
-static void calc_chirp_factors(sbr_info *sbr, uint8_t ch)
-{
- uint8_t i;
-
- for (i = 0; i < sbr->N_Q; i++)
- {
- sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]);
-
- if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i])
- sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25));
- else
- sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375));
-
- if (sbr->bwArray[ch][i] < COEF_CONST(0.015625))
- sbr->bwArray[ch][i] = COEF_CONST(0.0);
-
- if (sbr->bwArray[ch][i] > COEF_CONST(0.99609375))
- sbr->bwArray[ch][i] = COEF_CONST(0.99609375);
-
- sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i];
- sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i];
- }
-}
-
-static void patch_construction(sbr_info *sbr)
-{
- uint8_t i, k;
- uint8_t odd, sb;
- uint8_t msb = sbr->k0;
- uint8_t usb = sbr->kx;
- uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 };
- /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */
- uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)];
-
- sbr->noPatches = 0;
-
- if (goalSb < (sbr->kx + sbr->M))
- {
- for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++)
- k = i+1;
- } else {
- k = sbr->N_master;
- }
-
- if (sbr->N_master == 0)
- {
- sbr->noPatches = 0;
- sbr->patchNoSubbands[0] = 0;
- sbr->patchStartSubband[0] = 0;
-
- return;
- }
-
- do
- {
- int8_t j = k + 1;
-
- do
- {
- j--;
- sb = sbr->f_master[j];
- odd = (sb - 2 + sbr->k0) % 2;
-
- } while (sb > (sbr->k0 - 1 + msb - odd));
-
- sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0);
- sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd -
- sbr->patchNoSubbands[sbr->noPatches];
-
- if (sbr->patchNoSubbands[sbr->noPatches] > 0)
- {
- usb = sb;
- msb = sb;
- sbr->noPatches++;
- } else {
- msb = sbr->kx;
- }
-
- if (sbr->f_master[k] - sb < 3)
- k = sbr->N_master;
- } while (sb != (sbr->kx + sbr->M));
-
- if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1))
- {
- sbr->noPatches--;
- }
-
- sbr->noPatches = min(sbr->noPatches, 5);
-}
-
-#endif