diff options
Diffstat (limited to 'apps/eq.c')
-rw-r--r-- | apps/eq.c | 268 |
1 files changed, 0 insertions, 268 deletions
diff --git a/apps/eq.c b/apps/eq.c deleted file mode 100644 index 122a46a4c5..0000000000 --- a/apps/eq.c +++ /dev/null @@ -1,268 +0,0 @@ -/*************************************************************************** - * __________ __ ___. - * Open \______ \ ____ ____ | | _\_ |__ _______ ___ - * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / - * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < - * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ - * \/ \/ \/ \/ \/ - * $Id$ - * - * Copyright (C) 2006-2007 Thom Johansen - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY - * KIND, either express or implied. - * - ****************************************************************************/ - -#include <inttypes.h> -#include "config.h" -#include "fixedpoint.h" -#include "fracmul.h" -#include "eq.h" -#include "replaygain.h" - -/** - * Calculate first order shelving filter. Filter is not directly usable by the - * eq_filter() function. - * @param cutoff shelf midpoint frequency. See eq_pk_coefs for format. - * @param A decibel value multiplied by ten, describing gain/attenuation of - * shelf. Max value is 24 dB. - * @param low true for low-shelf filter, false for high-shelf filter. - * @param c pointer to coefficient storage. Coefficients are s4.27 format. - */ -void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c) -{ - long sin, cos; - int32_t b0, b1, a0, a1; /* s3.28 */ - const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */ - - sin = fp_sincos(cutoff/2, &cos); - if (low) { - const int32_t sin_div_g = fp_div(sin, g, 25); - const int32_t sin_g = FRACMUL(sin, g); - cos >>= 3; - b0 = sin_g + cos; /* 0.25 .. 4.10 */ - b1 = sin_g - cos; /* -1 .. 3.98 */ - a0 = sin_div_g + cos; /* 0.25 .. 4.10 */ - a1 = sin_div_g - cos; /* -1 .. 3.98 */ - } else { - const int32_t cos_div_g = fp_div(cos, g, 25); - const int32_t cos_g = FRACMUL(cos, g); - sin >>= 3; - b0 = sin + cos_g; /* 0.25 .. 4.10 */ - b1 = sin - cos_g; /* -3.98 .. 1 */ - a0 = sin + cos_div_g; /* 0.25 .. 4.10 */ - a1 = sin - cos_div_g; /* -3.98 .. 1 */ - } - - const int32_t rcp_a0 = fp_div(1, a0, 57); /* 0.24 .. 3.98, s2.29 */ - *c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */ - *c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */ - *c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */ -} - -#ifdef HAVE_SW_TONE_CONTROLS -/** - * Calculate second order section filter consisting of one low-shelf and one - * high-shelf section. - * @param cutoff_low low-shelf midpoint frequency. See eq_pk_coefs for format. - * @param cutoff_high high-shelf midpoint frequency. - * @param A_low decibel value multiplied by ten, describing gain/attenuation of - * low-shelf part. Max value is 24 dB. - * @param A_high decibel value multiplied by ten, describing gain/attenuation of - * high-shelf part. Max value is 24 dB. - * @param A decibel value multiplied by ten, describing additional overall gain. - * @param c pointer to coefficient storage. Coefficients are s4.27 format. - */ -void filter_bishelf_coefs(unsigned long cutoff_low, unsigned long cutoff_high, - long A_low, long A_high, long A, int32_t *c) -{ - const long g = get_replaygain_int(A*10) << 7; /* 10^(db/20), s0.31 */ - int32_t c_ls[3], c_hs[3]; - - filter_shelf_coefs(cutoff_low, A_low, true, c_ls); - filter_shelf_coefs(cutoff_high, A_high, false, c_hs); - c_ls[0] = FRACMUL(g, c_ls[0]); - c_ls[1] = FRACMUL(g, c_ls[1]); - - /* now we cascade the two first order filters to one second order filter - * which can be used by eq_filter(). these resulting coefficients have a - * really wide numerical range, so we use a fixed point format which will - * work for the selected cutoff frequencies (in dsp.c) only. - */ - const int32_t b0 = c_ls[0], b1 = c_ls[1], b2 = c_hs[0], b3 = c_hs[1]; - const int32_t a0 = c_ls[2], a1 = c_hs[2]; - *c++ = FRACMUL_SHL(b0, b2, 4); - *c++ = FRACMUL_SHL(b0, b3, 4) + FRACMUL_SHL(b1, b2, 4); - *c++ = FRACMUL_SHL(b1, b3, 4); - *c++ = a0 + a1; - *c++ = -FRACMUL_SHL(a0, a1, 4); -} -#endif - -/* Coef calculation taken from Audio-EQ-Cookbook.txt by Robert Bristow-Johnson. - * Slightly faster calculation can be done by deriving forms which use tan() - * instead of cos() and sin(), but the latter are far easier to use when doing - * fixed point math, and performance is not a big point in the calculation part. - * All the 'a' filter coefficients are negated so we can use only additions - * in the filtering equation. - */ - -/** - * Calculate second order section peaking filter coefficients. - * @param cutoff a value from 0 to 0x80000000, where 0 represents 0 Hz and - * 0x80000000 represents the Nyquist frequency (samplerate/2). - * @param Q Q factor value multiplied by ten. Lower bound is artificially set - * at 0.5. - * @param db decibel value multiplied by ten, describing gain/attenuation at - * peak freq. Max value is 24 dB. - * @param c pointer to coefficient storage. Coefficients are s3.28 format. - */ -void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) -{ - long cs; - const long one = 1 << 28; /* s3.28 */ - const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */ - const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ - int32_t a0, a1, a2; /* these are all s3.28 format */ - int32_t b0, b1, b2; - const long alphadivA = fp_div(alpha, A, 27); - const long alphaA = FRACMUL(alpha, A); - - /* possible numerical ranges are in comments by each coef */ - b0 = one + alphaA; /* [1 .. 5] */ - b1 = a1 = -2*(cs >> 3); /* [-2 .. 2] */ - b2 = one - alphaA; /* [-3 .. 1] */ - a0 = one + alphadivA; /* [1 .. 5] */ - a2 = one - alphadivA; /* [-3 .. 1] */ - - /* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */ - const long rcp_a0 = fp_div(1, a0, 59); /* s0.31 */ - *c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */ - *c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */ - *c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */ - *c++ = FRACMUL(-a1, rcp_a0); /* [-2 .. 2] */ - *c++ = FRACMUL(-a2, rcp_a0); /* [-0.6 .. 1] */ -} - -/** - * Calculate coefficients for lowshelf filter. Parameters are as for - * eq_pk_coefs, but the coefficient format is s5.26 fixed point. - */ -void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) -{ - long cs; - const long one = 1 << 25; /* s6.25 */ - const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ - const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ - const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ - const long ap1 = (A >> 4) + one; - const long am1 = (A >> 4) - one; - const long ap1_cs = FRACMUL(ap1, cs); - const long am1_cs = FRACMUL(am1, cs); - const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); - int32_t a0, a1, a2; /* these are all s6.25 format */ - int32_t b0, b1, b2; - - /* [0.1 .. 40] */ - b0 = FRACMUL_SHL(A, ap1 - am1_cs + twosqrtalpha, 2); - /* [-16 .. 63.4] */ - b1 = FRACMUL_SHL(A, am1 - ap1_cs, 3); - /* [0 .. 31.7] */ - b2 = FRACMUL_SHL(A, ap1 - am1_cs - twosqrtalpha, 2); - /* [0.5 .. 10] */ - a0 = ap1 + am1_cs + twosqrtalpha; - /* [-16 .. 4] */ - a1 = -2*(am1 + ap1_cs); - /* [0 .. 8] */ - a2 = ap1 + am1_cs - twosqrtalpha; - - /* [0.1 .. 1.99] */ - const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */ - *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */ - *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */ - *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */ - *c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */ - *c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */ -} - -/** - * Calculate coefficients for highshelf filter. Parameters are as for - * eq_pk_coefs, but the coefficient format is s5.26 fixed point. - */ -void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) -{ - long cs; - const long one = 1 << 25; /* s6.25 */ - const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ - const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ - const long alpha = fp_sincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ - const long ap1 = (A >> 4) + one; - const long am1 = (A >> 4) - one; - const long ap1_cs = FRACMUL(ap1, cs); - const long am1_cs = FRACMUL(am1, cs); - const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); - int32_t a0, a1, a2; /* these are all s6.25 format */ - int32_t b0, b1, b2; - - /* [0.1 .. 40] */ - b0 = FRACMUL_SHL(A, ap1 + am1_cs + twosqrtalpha, 2); - /* [-63.5 .. 16] */ - b1 = -FRACMUL_SHL(A, am1 + ap1_cs, 3); - /* [0 .. 32] */ - b2 = FRACMUL_SHL(A, ap1 + am1_cs - twosqrtalpha, 2); - /* [0.5 .. 10] */ - a0 = ap1 - am1_cs + twosqrtalpha; - /* [-4 .. 16] */ - a1 = 2*(am1 - ap1_cs); - /* [0 .. 8] */ - a2 = ap1 - am1_cs - twosqrtalpha; - - /* [0.1 .. 1.99] */ - const long rcp_a0 = fp_div(1, a0, 55); /* s1.30 */ - *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */ - *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */ - *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */ - *c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */ - *c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */ -} - -/* We realise the filters as a second order direct form 1 structure. Direct - * form 1 was chosen because of better numerical properties for fixed point - * implementations. - */ - -#if (!defined(CPU_COLDFIRE) && !defined(CPU_ARM)) -void eq_filter(int32_t **x, struct eqfilter *f, unsigned num, - unsigned channels, unsigned shift) -{ - unsigned c, i; - long long acc; - - /* Direct form 1 filtering code. - y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2], - where y[] is output and x[] is input. - */ - - for (c = 0; c < channels; c++) { - for (i = 0; i < num; i++) { - acc = (long long) x[c][i] * f->coefs[0]; - acc += (long long) f->history[c][0] * f->coefs[1]; - acc += (long long) f->history[c][1] * f->coefs[2]; - acc += (long long) f->history[c][2] * f->coefs[3]; - acc += (long long) f->history[c][3] * f->coefs[4]; - f->history[c][1] = f->history[c][0]; - f->history[c][0] = x[c][i]; - f->history[c][3] = f->history[c][2]; - x[c][i] = (acc << shift) >> 32; - f->history[c][2] = x[c][i]; - } - } -} -#endif - |