/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 Heikki Hannikainen * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #ifndef SIMULATOR #include #include #include "lcd.h" #include "menu.h" #include "debug_menu.h" #include "kernel.h" #include "sprintf.h" #include "button.h" #include "adc.h" #include "mas.h" #include "power.h" #include "rtc.h" #include "debug.h" #include "thread.h" #include "powermgmt.h" #include "system.h" /*---------------------------------------------------*/ /* SPECIAL DEBUG STUFF */ /*---------------------------------------------------*/ extern int ata_device; extern int ata_io_address; extern int num_threads; extern char *thread_name[]; #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_os(void) { char buf[32]; int button; int i; int usage; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage:"); for(i = 0; i < num_threads;i++) { usage = thread_stack_usage(i); snprintf(buf, 32, "%s: %d%%", thread_name[i], usage); lcd_puts(0, 1+i, buf); } lcd_update(); sleep(HZ/10); button = button_get(false); switch(button) { case BUTTON_OFF: case BUTTON_LEFT: return false; } } return false; } #else bool dbg_os(void) { char buf[32]; int button; int usage; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage"); usage = thread_stack_usage(currval); snprintf(buf, 32, "%d: %d%% ", currval, usage); lcd_puts(0, 1, buf); sleep(HZ/10); button = button_get(false); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = num_threads-1; break; case BUTTON_RIGHT: currval++; if(currval > num_threads-1) currval = 0; break; } } return false; } #endif #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; snprintf(buf, 32, "PADR: %04x", porta); lcd_puts(0, 0, buf); snprintf(buf, 32, "PBDR: %04x", portb); lcd_puts(0, 1, buf); snprintf(buf, 32, "AN0: %03x AN4: %03x", adc_read(0), adc_read(4)); lcd_puts(0, 2, buf); snprintf(buf, 32, "AN1: %03x AN5: %03x", adc_read(1), adc_read(5)); lcd_puts(0, 3, buf); snprintf(buf, 32, "AN2: %03x AN6: %03x", adc_read(2), adc_read(6)); lcd_puts(0, 4, buf); snprintf(buf, 32, "AN3: %03x AN7: %03x", adc_read(3), adc_read(7)); lcd_puts(0, 5, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV %d%% ", batt_int, batt_frac, battery_level()); lcd_puts(0, 6, buf); snprintf(buf, 32, "ATA: %s, 0x%x", ata_device?"slave":"master", ata_io_address); lcd_puts(0, 7, buf); lcd_update(); sleep(HZ/10); button = button_get(false); switch(button) { case BUTTON_OFF: return false; } } return false; } #else bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; switch(currval) { case 0: snprintf(buf, 32, "PADR: %04x ", porta); break; case 1: snprintf(buf, 32, "PBDR: %04x ", portb); break; case 2: snprintf(buf, 32, "AN0: %03x ", adc_read(0)); break; case 3: snprintf(buf, 32, "AN1: %03x ", adc_read(1)); break; case 4: snprintf(buf, 32, "AN2: %03x ", adc_read(2)); break; case 5: snprintf(buf, 32, "AN3: %03x ", adc_read(3)); break; case 6: snprintf(buf, 32, "AN4: %03x ", adc_read(4)); break; case 7: snprintf(buf, 32, "AN5: %03x ", adc_read(5)); break; case 8: snprintf(buf, 32, "AN6: %03x ", adc_read(6)); break; case 9: snprintf(buf, 32, "AN7: %03x ", adc_read(7)); break; case 10: snprintf(buf, 32, "%s, 0x%x ", ata_device?"slv":"mst", ata_io_address); break; } lcd_puts(0, 0, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV", batt_int, batt_frac); lcd_puts(0, 1, buf); sleep(HZ/5); button = button_get(false); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 10; break; case BUTTON_RIGHT: currval++; if(currval > 10) currval = 0; break; } } return false; } #endif #ifdef HAVE_RTC /* Read RTC RAM contents and display them */ bool dbg_rtc(void) { char buf[32]; unsigned char addr = 0, r, c; int i; int button; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "RTC read:"); while(1) { for (r = 0; r < 4; r++) { snprintf(buf, 10, "0x%02x: ", addr + r*4); for (c = 0; c <= 3; c++) { i = rtc_read(addr + r*4 + c); snprintf(buf + 6 + c*2, 3, "%02x", i); } lcd_puts(1, r+1, buf); } lcd_update(); sleep(HZ/2); button = button_get(false); switch(button) { case BUTTON_DOWN: if (addr < 63-16) { addr += 16; } break; case BUTTON_UP: if (addr) { addr -= 16; } break; case BUTTON_F2: /* clear the user RAM space */ for (c = 0; c <= 43; c++) rtc_write(0x14 + c, 0); break; case BUTTON_OFF: case BUTTON_LEFT: return false; } } return false; } #else bool dbg_rtc(void) { return false; } #endif #ifdef HAVE_LCD_CHARCELLS #define NUMROWS 1 #else #define NUMROWS 4 #endif /* Read MAS registers and display them */ bool dbg_mas(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS register read:"); while(1) { for (r = 0; r < NUMROWS; r++) { i = mas_readreg(addr + r); snprintf(buf, 30, "%02x %08x", addr + r, i); lcd_puts(0, r+1, buf); } lcd_update(); sleep(HZ/16); switch(button_get(false)) { #ifdef HAVE_RECORDER_KEYPAD case BUTTON_DOWN: #else case BUTTON_RIGHT: #endif addr += NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_UP: #else case BUTTON_LEFT: #endif if(addr) addr -= NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_LEFT: #else case BUTTON_DOWN: #endif return false; } } return false; } #ifdef HAVE_MAS3587F bool dbg_mas_codec(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS codec reg read:"); while(1) { for (r = 0; r < 4; r++) { i = mas_codec_readreg(addr + r); snprintf(buf, 30, "0x%02x: %08x", addr + r, i); lcd_puts(1, r+1, buf); } lcd_update(); sleep(HZ/16); switch(button_get(false)) { case BUTTON_DOWN: addr += 4; break; case BUTTON_UP: if (addr) { addr -= 4; } break; case BUTTON_LEFT: return false; } } return false; } #endif #ifdef HAVE_LCD_BITMAP /* * view_battery() shows a automatically scaled graph of the battery voltage * over time. Usable for estimating battery life / charging rate. * The power_history array is updated in power_thread of powermgmt.c. */ #define BAT_FIRST_VAL MAX(POWER_HISTORY_LEN - LCD_WIDTH - 1, 0) #define BAT_YSPACE (LCD_HEIGHT - 20) bool view_battery(void) { int view = 0; int i, x, y; int maxv, minv; char buf[32]; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch (view) { case 0: /* voltage history graph */ /* Find maximum and minimum voltage for scaling */ maxv = minv = 0; for (i = BAT_FIRST_VAL; i < POWER_HISTORY_LEN; i++) { if (power_history[i] > maxv) maxv = power_history[i]; if ((minv == 0) || ((power_history[i]) && (power_history[i] < minv)) ) { minv = power_history[i]; } } if (minv < 1) minv = 1; if (maxv < 2) maxv = 2; lcd_clear_display(); lcd_puts(0, 0, "Battery voltage:"); snprintf(buf, 30, "scale %d.%02d-%d.%02d V", minv / 100, minv % 100, maxv / 100, maxv % 100); lcd_puts(0, 1, buf); x = 0; for (i = BAT_FIRST_VAL+1; i < POWER_HISTORY_LEN; i++) { y = (power_history[i] - minv) * BAT_YSPACE / (maxv - minv); lcd_clearline(x, LCD_HEIGHT-1, x, 20); lcd_drawline(x, LCD_HEIGHT-1, x, MIN(MAX(LCD_HEIGHT-1 - y, 20), LCD_HEIGHT-1)); x++; } break; case 1: /* status: */ lcd_clear_display(); lcd_puts(0, 0, "Power status:"); y = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; snprintf(buf, 30, "Battery: %d.%02d V", y / 100, y % 100); lcd_puts(0, 1, buf); y = (adc_read(ADC_EXT_POWER) * EXT_SCALE_FACTOR) / 10000; snprintf(buf, 30, "External: %d.%02d V", y / 100, y % 100); lcd_puts(0, 2, buf); snprintf(buf, 30, "Charger: %s", charger_inserted() ? "present" : "absent"); lcd_puts(0, 3, buf); #ifdef HAVE_CHARGE_CTRL snprintf(buf, 30, "Charging: %s", charger_enabled ? "yes" : "no"); lcd_puts(0, 4, buf); #endif y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD] * 100 ) / CHARGE_END_NEGD / 2; snprintf(buf, 30, "short delta: %d", y); lcd_puts(0, 5, buf); y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD] * 100 ) / CHARGE_END_ZEROD / 2; snprintf(buf, 30, "long delta: %d", y); lcd_puts(0, 6, buf); #ifdef HAVE_CHARGE_CTRL lcd_puts(0, 7, power_message); #endif break; case 2: /* voltage deltas: */ lcd_clear_display(); lcd_puts(0, 0, "Voltage deltas:"); for (i = 0; i <= 6; i++) { y = power_history[POWER_HISTORY_LEN-1-i] - power_history[POWER_HISTORY_LEN-1-i-1]; snprintf(buf, 30, "-%d min: %s%d.%02d V", i, (y < 0) ? "-" : "", ((y < 0) ? y * -1 : y) / 100, ((y < 0) ? y * -1 : y ) % 100); lcd_puts(0, i+1, buf); } break; } lcd_update(); sleep(HZ/2); switch(button_get(false)) { case BUTTON_UP: if (view) view--; break; case BUTTON_DOWN: if (view < 2) view++; break; case BUTTON_LEFT: case BUTTON_OFF: return false; } } return false; } #endif #ifdef HAVE_MAS3507D bool dbg_mas_info(void) { int button; char buf[32]; int currval = 0; unsigned long val; unsigned long pll48, pll44, config; int pll_toggle = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch(currval) { case 0: mas_readmem(MAS_BANK_D1, 0xff7, &val, 1); lcd_puts(0, 0, "Design Code"); snprintf(buf, 32, "%05x ", val); break; case 1: lcd_puts(0, 0, "DC/DC mode "); snprintf(buf, 32, "8e: %05x ", mas_readreg(0x8e) & 0xfffff); break; case 2: lcd_puts(0, 0, "Mute/Bypass"); snprintf(buf, 32, "aa: %05x ", mas_readreg(0xaa) & 0xfffff); break; case 3: lcd_puts(0, 0, "PIOData "); snprintf(buf, 32, "ed: %05x ", mas_readreg(0xed) & 0xfffff); break; case 4: lcd_puts(0, 0, "Startup Cfg"); snprintf(buf, 32, "e6: %05x ", mas_readreg(0xe6) & 0xfffff); break; case 5: lcd_puts(0, 0, "KPrescale "); snprintf(buf, 32, "e7: %05x ", mas_readreg(0xe7) & 0xfffff); break; case 6: lcd_puts(0, 0, "KBass "); snprintf(buf, 32, "6b: %05x ", mas_readreg(0x6b) & 0xfffff); break; case 7: lcd_puts(0, 0, "KTreble "); snprintf(buf, 32, "6f: %05x ", mas_readreg(0x6f) & 0xfffff); break; case 8: mas_readmem(MAS_BANK_D0, 0x300, &val, 1); lcd_puts(0, 0, "Frame Count"); snprintf(buf, 32, "0/300: %04x", val & 0xffff); break; case 9: mas_readmem(MAS_BANK_D0, 0x301, &val, 1); lcd_puts(0, 0, "Status1 "); snprintf(buf, 32, "0/301: %04x", val & 0xffff); break; case 10: mas_readmem(MAS_BANK_D0, 0x302, &val, 1); lcd_puts(0, 0, "Status2 "); snprintf(buf, 32, "0/302: %04x", val & 0xffff); break; case 11: mas_readmem(MAS_BANK_D0, 0x303, &val, 1); lcd_puts(0, 0, "CRC Count "); snprintf(buf, 32, "0/303: %04x", val & 0xffff); break; case 12: mas_readmem(MAS_BANK_D0, 0x36d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/36d %05x", val & 0xfffff); break; case 13: mas_readmem(MAS_BANK_D0, 0x32d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/32d %05x", val & 0xfffff); break; case 14: mas_readmem(MAS_BANK_D0, 0x36e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/36e %05x", val & 0xfffff); break; case 15: mas_readmem(MAS_BANK_D0, 0x32e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/32e %05x", val & 0xfffff); break; case 16: mas_readmem(MAS_BANK_D0, 0x36f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/36f %05x", val & 0xfffff); break; case 17: mas_readmem(MAS_BANK_D0, 0x32f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/32f %05x", val & 0xfffff); break; case 18: mas_readmem(MAS_BANK_D1, 0x7f8, &val, 1); lcd_puts(0, 0, "LL Gain "); snprintf(buf, 32, "1/7f8 %05x", val & 0xfffff); break; case 19: mas_readmem(MAS_BANK_D1, 0x7f9, &val, 1); lcd_puts(0, 0, "LR Gain "); snprintf(buf, 32, "1/7f9 %05x", val & 0xfffff); break; case 20: mas_readmem(MAS_BANK_D1, 0x7fa, &val, 1); lcd_puts(0, 0, "RL Gain "); snprintf(buf, 32, "1/7fa %05x", val & 0xfffff); break; case 21: mas_readmem(MAS_BANK_D1, 0x7fb, &val, 1); lcd_puts(0, 0, "RR Gain "); snprintf(buf, 32, "1/7fb %05x", val & 0xfffff); break; case 22: lcd_puts(0, 0, "L Trailbits"); snprintf(buf, 32, "c5: %05x ", mas_readreg(0xc5) & 0xfffff); break; case 23: lcd_puts(0, 0, "R Trailbits"); snprintf(buf, 32, "c6: %05x ", mas_readreg(0xc6) & 0xfffff); break; } lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 23; break; case BUTTON_RIGHT: currval++; if(currval > 23) currval = 0; break; case BUTTON_PLAY: pll_toggle = !pll_toggle; if(pll_toggle) { /* 14.31818 MHz crystal */ pll48 = 0x5d9d0; pll44 = 0xfffceceb; config = 0; } else { /* 14.725 MHz crystal */ pll48 = 0x2d0de; pll44 = 0xfffa2319; config = 0; } mas_writemem(MAS_BANK_D0, 0x32d, &pll48, 1); mas_writemem(MAS_BANK_D0, 0x32e, &pll44, 1); mas_writemem(MAS_BANK_D0, 0x32f, &config, 1); mas_run(0x475); break; } } return false; } #endif bool debug_menu(void) { int m; bool result; struct menu_items items[] = { { "View I/O ports", dbg_ports }, #ifdef HAVE_LCD_BITMAP #ifdef HAVE_RTC { "View/clr RTC RAM", dbg_rtc }, #endif /* HAVE_RTC */ #endif /* HAVE_LCD_BITMAP */ { "View OS stacks", dbg_os }, #ifdef HAVE_MAS3507D { "View MAS info", dbg_mas_info }, #endif { "View MAS regs", dbg_mas }, #ifdef HAVE_MAS3587F { "View MAS codec", dbg_mas_codec }, #endif #ifdef HAVE_LCD_BITMAP { "View battery", view_battery }, #endif }; m=menu_init( items, sizeof items / sizeof(struct menu_items) ); result = menu_run(m); menu_exit(m); return result; } #endif /* SIMULATOR */