/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006-2007 Thom Johansen * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* uncomment this to make filtering calculate lower bits after shifting. * without this, "shift" - 1 of the lower bits will be lost here. */ /* #define HIGH_PRECISION */ /* * void eq_filter(int32_t **x, struct eqfilter *f, unsigned num, * unsigned channels, unsigned shift) */ .text .global eq_filter eq_filter: lea.l (-11*4, %sp), %sp movem.l %d2-%d7/%a2-%a6, (%sp) | save clobbered regs move.l (11*4+8, %sp), %a5 | fetch filter structure address move.l (11*4+20, %sp), %d7 | load shift count subq.l #1, %d7 | EMAC gives us one free shift #ifdef HIGH_PRECISION moveq.l #8, %d6 sub.l %d7, %d6 | shift for lower part of accumulator #endif movem.l (%a5), %a0-%a4 | load coefs lea.l (5*4, %a5), %a5 | point to filter history .filterloop: move.l (11*4+4, %sp), %a6 | load input channel pointer addq.l #4, (11*4+4, %sp) | point x to next channel move.l (%a6), %a6 move.l (11*4+12, %sp), %d5 | number of samples movem.l (%a5), %d0-%d3 | load filter history /* d0-d3 = history, d4 = temp, d5 = sample count, d6 = lower shift amount, * d7 = upper shift amount, a0-a4 = coefs, a5 = history pointer, a6 = x[] */ .loop: /* Direct form 1 filtering code. We assume DSP has put EMAC in frac mode. * y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2], * where y[] is output and x[] is input. This is performed out of order * to do parallel load of input value. */ mac.l %a2, %d1, %acc0 | acc = b2*x[i - 2] move.l %d0, %d1 | fix input history mac.l %a1, %d0, (%a6), %d0, %acc0 | acc += b1*x[i - 1], x[i] -> d0 mac.l %a0, %d0, %acc0 | acc += b0*x[i] mac.l %a3, %d2, %acc0 | acc += a1*y[i - 1] mac.l %a4, %d3, %acc0 | acc += a2*y[i - 2] move.l %d2, %d3 | fix output history #ifdef HIGH_PRECISION move.l %accext01, %d2 | fetch lower part of accumulator move.b %d2, %d4 | clear upper three bytes lsr.l %d6, %d4 | shift lower bits #endif movclr.l %acc0, %d2 | fetch upper part of result asl.l %d7, %d2 | restore fixed point format #ifdef HIGH_PRECISION or.l %d2, %d4 | combine lower and upper parts #endif move.l %d2, (%a6)+ | save result subq.l #1, %d5 | are we done with this channel? jne .loop movem.l %d0-%d3, (%a5) | save history back to struct lea.l (4*4, %a5), %a5 | point to next channel's history subq.l #1, (11*4+16, %sp) | have we processed both channels? jne .filterloop movem.l (%sp), %d2-%d7/%a2-%a6 lea.l (11*4, %sp), %sp rts