/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Alan Korr * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "ata.h" #include "kernel.h" #include "thread.h" #include "led.h" #include "cpu.h" #include "system.h" #include "debug.h" #include "panic.h" #include "usb.h" #include "power.h" #include "string.h" #include "ata_idle_notify.h" #include "ata-target.h" #include "storage.h" #define SECTOR_SIZE (512) #define ATA_FEATURE ATA_ERROR #define ATA_STATUS ATA_COMMAND #define ATA_ALT_STATUS ATA_CONTROL #define SELECT_DEVICE1 0x10 #define SELECT_LBA 0x40 #define CONTROL_nIEN 0x02 #define CONTROL_SRST 0x04 #define CMD_READ_SECTORS 0x20 #define CMD_WRITE_SECTORS 0x30 #define CMD_WRITE_SECTORS_EXT 0x34 #define CMD_READ_MULTIPLE 0xC4 #define CMD_READ_MULTIPLE_EXT 0x29 #define CMD_WRITE_MULTIPLE 0xC5 #define CMD_SET_MULTIPLE_MODE 0xC6 #define CMD_STANDBY_IMMEDIATE 0xE0 #define CMD_STANDBY 0xE2 #define CMD_IDENTIFY 0xEC #define CMD_SLEEP 0xE6 #define CMD_SET_FEATURES 0xEF #define CMD_SECURITY_FREEZE_LOCK 0xF5 #ifdef HAVE_ATA_DMA #define CMD_READ_DMA 0xC8 #define CMD_READ_DMA_EXT 0x25 #define CMD_WRITE_DMA 0xCA #define CMD_WRITE_DMA_EXT 0x35 #endif /* Should all be < 0x100 (which are reserved for control messages) */ #define Q_SLEEP 0 #define Q_CLOSE 1 #define READWRITE_TIMEOUT 5*HZ #ifdef HAVE_ATA_POWER_OFF #define ATA_POWER_OFF_TIMEOUT 2*HZ #endif #ifdef ATA_DRIVER_CLOSE static unsigned int ata_thread_id = 0; #endif #if defined(MAX_PHYS_SECTOR_SIZE) && MEM == 64 /* Hack - what's the deal with 5g? */ struct ata_lock { struct thread_entry *thread; int count; volatile unsigned char locked; IF_COP( struct corelock cl; ) }; static void ata_lock_init(struct ata_lock *l) { corelock_init(&l->cl); l->locked = 0; l->count = 0; l->thread = NULL; } static void ata_lock_lock(struct ata_lock *l) { struct thread_entry * const current = thread_id_entry(THREAD_ID_CURRENT); if (current == l->thread) { l->count++; return; } corelock_lock(&l->cl); IF_PRIO( current->skip_count = -1; ) while (l->locked != 0) { corelock_unlock(&l->cl); switch_thread(); corelock_lock(&l->cl); } l->locked = 1; l->thread = current; corelock_unlock(&l->cl); } static void ata_lock_unlock(struct ata_lock *l) { if (l->count > 0) { l->count--; return; } corelock_lock(&l->cl); IF_PRIO( l->thread->skip_count = 0; ) l->thread = NULL; l->locked = 0; corelock_unlock(&l->cl); } #define mutex ata_lock #define mutex_init ata_lock_init #define mutex_lock ata_lock_lock #define mutex_unlock ata_lock_unlock #endif /* MAX_PHYS_SECTOR_SIZE */ #if defined(HAVE_USBSTACK) && defined(USE_ROCKBOX_USB) #define ALLOW_USB_SPINDOWN #endif static struct mutex ata_mtx SHAREDBSS_ATTR; static int ata_device; /* device 0 (master) or 1 (slave) */ static int spinup_time = 0; #if (CONFIG_LED == LED_REAL) static bool ata_led_enabled = true; static bool ata_led_on = false; #endif static bool spinup = false; static bool sleeping = true; static bool poweroff = false; static long sleep_timeout = 5*HZ; #ifdef HAVE_LBA48 static bool lba48 = false; /* set for 48 bit addressing */ #endif static long ata_stack[(DEFAULT_STACK_SIZE*3)/sizeof(long)]; static const char ata_thread_name[] = "ata"; static struct event_queue ata_queue SHAREDBSS_ATTR; static bool initialized = false; static long last_user_activity = -1; static long last_disk_activity = -1; static unsigned long total_sectors; static int multisectors; /* number of supported multisectors */ static unsigned short identify_info[SECTOR_SIZE/2]; #ifdef MAX_PHYS_SECTOR_SIZE struct sector_cache_entry { bool inuse; unsigned long sectornum; /* logical sector */ unsigned char data[MAX_PHYS_SECTOR_SIZE]; }; /* buffer for reading and writing large physical sectors */ #define NUMCACHES 2 static struct sector_cache_entry sector_cache; static int phys_sector_mult = 1; #endif #ifdef HAVE_ATA_DMA static int dma_mode = 0; #endif static int ata_power_on(void); static int perform_soft_reset(void); static int set_multiple_mode(int sectors); static int set_features(void); STATICIRAM ICODE_ATTR int wait_for_bsy(void) { long timeout = current_tick + HZ*30; do { if (!(ATA_STATUS & STATUS_BSY)) return 1; last_disk_activity = current_tick; yield(); } while (TIME_BEFORE(current_tick, timeout)); return 0; /* timeout */ } STATICIRAM ICODE_ATTR int wait_for_rdy(void) { long timeout; if (!wait_for_bsy()) return 0; timeout = current_tick + HZ*10; do { if (ATA_ALT_STATUS & STATUS_RDY) return 1; last_disk_activity = current_tick; yield(); } while (TIME_BEFORE(current_tick, timeout)); return 0; /* timeout */ } STATICIRAM ICODE_ATTR int wait_for_start_of_transfer(void) { if (!wait_for_bsy()) return 0; return (ATA_ALT_STATUS & (STATUS_BSY|STATUS_DRQ)) == STATUS_DRQ; } STATICIRAM ICODE_ATTR int wait_for_end_of_transfer(void) { if (!wait_for_bsy()) return 0; return (ATA_ALT_STATUS & (STATUS_BSY|STATUS_RDY|STATUS_DF|STATUS_DRQ|STATUS_ERR)) == STATUS_RDY; } #if (CONFIG_LED == LED_REAL) /* Conditionally block LED access for the ATA driver, so the LED can be * (mis)used for other purposes */ static void ata_led(bool on) { ata_led_on = on; if (ata_led_enabled) led(ata_led_on); } #else #define ata_led(on) led(on) #endif #ifndef ATA_OPTIMIZED_READING STATICIRAM ICODE_ATTR void copy_read_sectors(unsigned char* buf, int wordcount) { unsigned short tmp = 0; if ( (unsigned long)buf & 1) { /* not 16-bit aligned, copy byte by byte */ unsigned char* bufend = buf + wordcount*2; do { tmp = ATA_DATA; #if defined(SWAP_WORDS) || defined(ROCKBOX_LITTLE_ENDIAN) *buf++ = tmp & 0xff; /* I assume big endian */ *buf++ = tmp >> 8; /* and don't use the SWAB16 macro */ #else *buf++ = tmp >> 8; *buf++ = tmp & 0xff; #endif } while (buf < bufend); /* tail loop is faster */ } else { /* 16-bit aligned, can do faster copy */ unsigned short* wbuf = (unsigned short*)buf; unsigned short* wbufend = wbuf + wordcount; do { #ifdef SWAP_WORDS *wbuf = swap16(ATA_DATA); #else *wbuf = ATA_DATA; #endif } while (++wbuf < wbufend); /* tail loop is faster */ } } #endif /* !ATA_OPTIMIZED_READING */ #ifndef ATA_OPTIMIZED_WRITING STATICIRAM ICODE_ATTR void copy_write_sectors(const unsigned char* buf, int wordcount) { if ( (unsigned long)buf & 1) { /* not 16-bit aligned, copy byte by byte */ unsigned short tmp = 0; const unsigned char* bufend = buf + wordcount*2; do { #if defined(SWAP_WORDS) || defined(ROCKBOX_LITTLE_ENDIAN) tmp = (unsigned short) *buf++; tmp |= (unsigned short) *buf++ << 8; SET_16BITREG(ATA_DATA, tmp); #else tmp = (unsigned short) *buf++ << 8; tmp |= (unsigned short) *buf++; SET_16BITREG(ATA_DATA, tmp); #endif } while (buf < bufend); /* tail loop is faster */ } else { /* 16-bit aligned, can do faster copy */ unsigned short* wbuf = (unsigned short*)buf; unsigned short* wbufend = wbuf + wordcount; do { #ifdef SWAP_WORDS SET_16BITREG(ATA_DATA, swap16(*wbuf)); #else SET_16BITREG(ATA_DATA, *wbuf); #endif } while (++wbuf < wbufend); /* tail loop is faster */ } } #endif /* !ATA_OPTIMIZED_WRITING */ static int ata_transfer_sectors(unsigned long start, int incount, void* inbuf, int write) { int ret = 0; long timeout; int count; void* buf; long spinup_start; #ifdef HAVE_ATA_DMA bool usedma = false; #endif #ifndef MAX_PHYS_SECTOR_SIZE mutex_lock(&ata_mtx); #endif if (start + incount > total_sectors) { ret = -1; goto error; } last_disk_activity = current_tick; spinup_start = current_tick; ata_led(true); if ( sleeping ) { spinup = true; if (poweroff) { if (ata_power_on()) { ret = -2; goto error; } } else { if (perform_soft_reset()) { ret = -2; goto error; } } } timeout = current_tick + READWRITE_TIMEOUT; SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) { ret = -3; goto error; } retry: buf = inbuf; count = incount; while (TIME_BEFORE(current_tick, timeout)) { ret = 0; last_disk_activity = current_tick; #ifdef HAVE_ATA_DMA /* If DMA is supported and parameters are ok for DMA, use it */ if (dma_mode && ata_dma_setup(inbuf, incount * SECTOR_SIZE, write)) usedma = true; #endif #ifdef HAVE_LBA48 if (lba48) { SET_REG(ATA_NSECTOR, count >> 8); SET_REG(ATA_NSECTOR, count & 0xff); SET_REG(ATA_SECTOR, (start >> 24) & 0xff); /* 31:24 */ SET_REG(ATA_SECTOR, start & 0xff); /* 7:0 */ SET_REG(ATA_LCYL, 0); /* 39:32 */ SET_REG(ATA_LCYL, (start >> 8) & 0xff); /* 15:8 */ SET_REG(ATA_HCYL, 0); /* 47:40 */ SET_REG(ATA_HCYL, (start >> 16) & 0xff); /* 23:16 */ SET_REG(ATA_SELECT, SELECT_LBA | ata_device); #ifdef HAVE_ATA_DMA if (write) SET_REG(ATA_COMMAND, usedma ? CMD_WRITE_DMA_EXT : CMD_WRITE_MULTIPLE_EXT); else SET_REG(ATA_COMMAND, usedma ? CMD_READ_DMA_EXT : CMD_READ_MULTIPLE_EXT); #else SET_REG(ATA_COMMAND, write ? CMD_WRITE_MULTIPLE_EXT : CMD_READ_MULTIPLE_EXT); #endif } else #endif { SET_REG(ATA_NSECTOR, count & 0xff); /* 0 means 256 sectors */ SET_REG(ATA_SECTOR, start & 0xff); SET_REG(ATA_LCYL, (start >> 8) & 0xff); SET_REG(ATA_HCYL, (start >> 16) & 0xff); SET_REG(ATA_SELECT, ((start >> 24) & 0xf) | SELECT_LBA | ata_device); #ifdef HAVE_ATA_DMA if (write) SET_REG(ATA_COMMAND, usedma ? CMD_WRITE_DMA : CMD_WRITE_MULTIPLE); else SET_REG(ATA_COMMAND, usedma ? CMD_READ_DMA : CMD_READ_MULTIPLE); #else SET_REG(ATA_COMMAND, write ? CMD_WRITE_MULTIPLE : CMD_READ_MULTIPLE); #endif } /* wait at least 400ns between writing command and reading status */ __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); #ifdef HAVE_ATA_DMA if (usedma) { if (!ata_dma_finish()) ret = -7; if (ret != 0) { perform_soft_reset(); goto retry; } if (spinup) { spinup_time = current_tick - spinup_start; spinup = false; sleeping = false; poweroff = false; } } else #endif /* HAVE_ATA_DMA */ { while (count) { int sectors; int wordcount; int status; if (!wait_for_start_of_transfer()) { /* We have timed out waiting for RDY and/or DRQ, possibly because the hard drive is shaking and has problems reading the data. We have two options: 1) Wait some more 2) Perform a soft reset and try again. We choose alternative 2. */ perform_soft_reset(); ret = -5; goto retry; } if (spinup) { spinup_time = current_tick - spinup_start; spinup = false; sleeping = false; poweroff = false; } /* read the status register exactly once per loop */ status = ATA_STATUS; if (count >= multisectors ) sectors = multisectors; else sectors = count; wordcount = sectors * SECTOR_SIZE / 2; if (write) copy_write_sectors(buf, wordcount); else copy_read_sectors(buf, wordcount); /* "Device errors encountered during READ MULTIPLE commands are posted at the beginning of the block or partial block transfer, but the DRQ bit is still set to one and the data transfer shall take place, including transfer of corrupted data, if any." -- ATA specification */ if ( status & (STATUS_BSY | STATUS_ERR | STATUS_DF) ) { perform_soft_reset(); ret = -6; goto retry; } buf += sectors * SECTOR_SIZE; /* Advance one chunk of sectors */ count -= sectors; last_disk_activity = current_tick; } } if(!ret && !wait_for_end_of_transfer()) { perform_soft_reset(); ret = -4; goto retry; } break; } error: ata_led(false); #ifndef MAX_PHYS_SECTOR_SIZE mutex_unlock(&ata_mtx); #endif return ret; } #ifndef MAX_PHYS_SECTOR_SIZE int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int incount, void* inbuf) { #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif return ata_transfer_sectors(start, incount, inbuf, false); } #endif #ifndef MAX_PHYS_SECTOR_SIZE int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf) { #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif return ata_transfer_sectors(start, count, (void*)buf, true); } #endif #ifdef MAX_PHYS_SECTOR_SIZE static int cache_sector(unsigned long sector) { int rc; sector &= ~(phys_sector_mult - 1); /* round down to physical sector boundary */ /* check whether the sector is already cached */ if (sector_cache.inuse && (sector_cache.sectornum == sector)) return 0; /* not found: read the sector */ sector_cache.inuse = false; rc = ata_transfer_sectors(sector, phys_sector_mult, sector_cache.data, false); if (!rc) { sector_cache.sectornum = sector; sector_cache.inuse = true; } return rc; } static inline int flush_current_sector(void) { return ata_transfer_sectors(sector_cache.sectornum, phys_sector_mult, sector_cache.data, true); } int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int incount, void* inbuf) { int rc = 0; int offset; #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif mutex_lock(&ata_mtx); offset = start & (phys_sector_mult - 1); if (offset) /* first partial sector */ { int partcount = MIN(incount, phys_sector_mult - offset); rc = cache_sector(start); if (rc) { rc = rc * 10 - 1; goto error; } memcpy(inbuf, sector_cache.data + offset * SECTOR_SIZE, partcount * SECTOR_SIZE); start += partcount; inbuf += partcount * SECTOR_SIZE; incount -= partcount; } if (incount) { offset = incount & (phys_sector_mult - 1); incount -= offset; if (incount) { rc = ata_transfer_sectors(start, incount, inbuf, false); if (rc) { rc = rc * 10 - 2; goto error; } start += incount; inbuf += incount * SECTOR_SIZE; } if (offset) { rc = cache_sector(start); if (rc) { rc = rc * 10 - 3; goto error; } memcpy(inbuf, sector_cache.data, offset * SECTOR_SIZE); } } error: mutex_unlock(&ata_mtx); return rc; } int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf) { int rc = 0; int offset; #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif mutex_lock(&ata_mtx); offset = start & (phys_sector_mult - 1); if (offset) /* first partial sector */ { int partcount = MIN(count, phys_sector_mult - offset); rc = cache_sector(start); if (rc) { rc = rc * 10 - 1; goto error; } memcpy(sector_cache.data + offset * SECTOR_SIZE, buf, partcount * SECTOR_SIZE); rc = flush_current_sector(); if (rc) { rc = rc * 10 - 2; goto error; } start += partcount; buf += partcount * SECTOR_SIZE; count -= partcount; } if (count) { offset = count & (phys_sector_mult - 1); count -= offset; if (count) { rc = ata_transfer_sectors(start, count, (void*)buf, true); if (rc) { rc = rc * 10 - 3; goto error; } start += count; buf += count * SECTOR_SIZE; } if (offset) { rc = cache_sector(start); if (rc) { rc = rc * 10 - 4; goto error; } memcpy(sector_cache.data, buf, offset * SECTOR_SIZE); rc = flush_current_sector(); if (rc) { rc = rc * 10 - 5; goto error; } } } error: mutex_unlock(&ata_mtx); return rc; } #endif /* MAX_PHYS_SECTOR_SIZE */ static int check_registers(void) { int i; if ( ATA_STATUS & STATUS_BSY ) return -1; for (i = 0; i<64; i++) { SET_REG(ATA_NSECTOR, WRITE_PATTERN1); SET_REG(ATA_SECTOR, WRITE_PATTERN2); SET_REG(ATA_LCYL, WRITE_PATTERN3); SET_REG(ATA_HCYL, WRITE_PATTERN4); if (((ATA_NSECTOR & READ_PATTERN1_MASK) == READ_PATTERN1) && ((ATA_SECTOR & READ_PATTERN2_MASK) == READ_PATTERN2) && ((ATA_LCYL & READ_PATTERN3_MASK) == READ_PATTERN3) && ((ATA_HCYL & READ_PATTERN4_MASK) == READ_PATTERN4)) return 0; } return -2; } static int freeze_lock(void) { /* does the disk support Security Mode feature set? */ if (identify_info[82] & 2) { SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) return -1; SET_REG(ATA_COMMAND, CMD_SECURITY_FREEZE_LOCK); if (!wait_for_rdy()) return -2; } return 0; } void ata_spindown(int seconds) { sleep_timeout = seconds * HZ; } bool ata_disk_is_active(void) { return !sleeping; } static int ata_perform_sleep(void) { mutex_lock(&ata_mtx); SET_REG(ATA_SELECT, ata_device); if(!wait_for_rdy()) { DEBUGF("ata_perform_sleep() - not RDY\n"); mutex_unlock(&ata_mtx); return -1; } SET_REG(ATA_COMMAND, CMD_SLEEP); if (!wait_for_rdy()) { DEBUGF("ata_perform_sleep() - CMD failed\n"); mutex_unlock(&ata_mtx); return -2; } sleeping = true; mutex_unlock(&ata_mtx); return 0; } void ata_sleep(void) { queue_post(&ata_queue, Q_SLEEP, 0); } void ata_sleepnow(void) { if (!spinup && !sleeping && !ata_mtx.locked && initialized) { call_storage_idle_notifys(false); ata_perform_sleep(); } } void ata_spin(void) { last_user_activity = current_tick; } static void ata_thread(void) { static long last_sleep = 0; struct queue_event ev; static long last_seen_mtx_unlock = 0; #ifdef ALLOW_USB_SPINDOWN static bool usb_mode = false; #endif while (1) { queue_wait_w_tmo(&ata_queue, &ev, HZ/2); switch ( ev.id ) { case SYS_TIMEOUT: if (!spinup && !sleeping) { if (!ata_mtx.locked) { if (!last_seen_mtx_unlock) last_seen_mtx_unlock = current_tick; if (TIME_AFTER(current_tick, last_seen_mtx_unlock+(HZ*2))) { #ifdef ALLOW_USB_SPINDOWN if(!usb_mode) #endif { call_storage_idle_notifys(false); } last_seen_mtx_unlock = 0; } } if ( sleep_timeout && TIME_AFTER( current_tick, last_user_activity + sleep_timeout ) && TIME_AFTER( current_tick, last_disk_activity + sleep_timeout ) ) { #ifdef ALLOW_USB_SPINDOWN if(!usb_mode) #endif { call_storage_idle_notifys(true); } ata_perform_sleep(); last_sleep = current_tick; } } #ifdef HAVE_ATA_POWER_OFF if ( !spinup && sleeping && !poweroff && TIME_AFTER( current_tick, last_sleep + ATA_POWER_OFF_TIMEOUT )) { mutex_lock(&ata_mtx); ide_power_enable(false); poweroff = true; mutex_unlock(&ata_mtx); } #endif break; #ifndef USB_NONE case SYS_USB_CONNECTED: /* Tell the USB thread that we are safe */ DEBUGF("ata_thread got SYS_USB_CONNECTED\n"); #ifdef ALLOW_USB_SPINDOWN usb_mode = true; usb_acknowledge(SYS_USB_CONNECTED_ACK); /* There is no need to force ATA power on */ #else if (sleeping) { mutex_lock(&ata_mtx); ata_led(true); if (poweroff) { ata_power_on(); poweroff = false; } else { perform_soft_reset(); } sleeping = false; ata_led(false); mutex_unlock(&ata_mtx); } /* Wait until the USB cable is extracted again */ usb_acknowledge(SYS_USB_CONNECTED_ACK); usb_wait_for_disconnect(&ata_queue); #endif break; #ifdef ALLOW_USB_SPINDOWN case SYS_USB_DISCONNECTED: /* Tell the USB thread that we are ready again */ DEBUGF("ata_thread got SYS_USB_DISCONNECTED\n"); usb_acknowledge(SYS_USB_DISCONNECTED_ACK); usb_mode = false; break; #endif #endif /* USB_NONE */ case Q_SLEEP: #ifdef ALLOW_USB_SPINDOWN if(!usb_mode) #endif { call_storage_idle_notifys(false); } last_disk_activity = current_tick - sleep_timeout + (HZ/2); break; #ifdef ATA_DRIVER_CLOSE case Q_CLOSE: return; #endif } } } /* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */ static int ata_hard_reset(void) { int ret; mutex_lock(&ata_mtx); ata_reset(); /* state HRR2 */ SET_REG(ATA_SELECT, ata_device); /* select the right device */ ret = wait_for_bsy(); /* Massage the return code so it is 0 on success and -1 on failure */ ret = ret?0:-1; mutex_unlock(&ata_mtx); return ret; } static int perform_soft_reset(void) { /* If this code is allowed to run on a Nano, the next reads from the flash will * time out, so we disable it. It shouldn't be necessary anyway, since the * ATA -> Flash interface automatically sleeps almost immediately after the * last command. */ int ret; int retry_count; SET_REG(ATA_SELECT, SELECT_LBA | ata_device ); SET_REG(ATA_CONTROL, CONTROL_nIEN|CONTROL_SRST ); sleep(1); /* >= 5us */ #ifdef HAVE_ATA_DMA /* DMA requires INTRQ be enabled */ SET_REG(ATA_CONTROL, 0); #else SET_REG(ATA_CONTROL, CONTROL_nIEN); #endif sleep(1); /* >2ms */ /* This little sucker can take up to 30 seconds */ retry_count = 8; do { ret = wait_for_rdy(); } while(!ret && retry_count--); if (!ret) return -1; if (set_features()) return -2; if (set_multiple_mode(multisectors)) return -3; if (freeze_lock()) return -4; return 0; } int ata_soft_reset(void) { int ret; mutex_lock(&ata_mtx); ret = perform_soft_reset(); mutex_unlock(&ata_mtx); return ret; } static int ata_power_on(void) { int rc; ide_power_enable(true); sleep(HZ/4); /* allow voltage to build up */ /* Accessing the PP IDE controller too early after powering up the disk * makes the core hang for a short time, causing an audio dropout. This * also depends on the disk; iPod Mini G2 needs at least HZ/5 to get rid * of the dropout. Since this time isn't additive (the wait_for_bsy() in * ata_hard_reset() will shortened by the same amount), it's a good idea * to do this on all HDD based targets. */ if( ata_hard_reset() ) return -1; rc = set_features(); if (rc) return rc * 10 - 2; if (set_multiple_mode(multisectors)) return -3; if (freeze_lock()) return -4; return 0; } static int master_slave_detect(void) { /* master? */ SET_REG(ATA_SELECT, 0); if ( ATA_STATUS & (STATUS_RDY|STATUS_BSY) ) { ata_device = 0; DEBUGF("Found master harddisk\n"); } else { /* slave? */ SET_REG(ATA_SELECT, SELECT_DEVICE1); if ( ATA_STATUS & (STATUS_RDY|STATUS_BSY) ) { ata_device = SELECT_DEVICE1; DEBUGF("Found slave harddisk\n"); } else return -1; } return 0; } static int identify(void) { int i; SET_REG(ATA_SELECT, ata_device); if(!wait_for_rdy()) { DEBUGF("identify() - not RDY\n"); return -1; } SET_REG(ATA_COMMAND, CMD_IDENTIFY); if (!wait_for_start_of_transfer()) { DEBUGF("identify() - CMD failed\n"); return -2; } for (i=0; i>= 1; if (!testbit) return 0; max--; } } #endif static int set_features(void) { static struct { unsigned char id_word; unsigned char id_bit; unsigned char subcommand; unsigned char parameter; } features[] = { { 83, 14, 0x03, 0 }, /* force PIO mode */ { 83, 3, 0x05, 0x80 }, /* adv. power management: lowest w/o standby */ { 83, 9, 0x42, 0x80 }, /* acoustic management: lowest noise */ { 82, 6, 0xaa, 0 }, /* enable read look-ahead */ #ifdef HAVE_ATA_DMA { 0, 0, 0x03, 0 }, /* DMA mode */ #endif }; int i; int pio_mode = 2; /* Find out the highest supported PIO mode */ if(identify_info[64] & 2) pio_mode = 4; else if(identify_info[64] & 1) pio_mode = 3; /* Update the table: set highest supported pio mode that we also support */ features[0].parameter = 8 + pio_mode; #ifdef HAVE_ATA_DMA if (identify_info[53] & (1<<2)) /* Ultra DMA mode info present, find a mode */ dma_mode = get_best_mode(identify_info[88], ATA_MAX_UDMA, 0x40); if (!dma_mode) { /* No UDMA mode found, try to find a multi-word DMA mode */ dma_mode = get_best_mode(identify_info[63], ATA_MAX_MWDMA, 0x20); features[4].id_word = 63; } else features[4].id_word = 88; features[4].id_bit = dma_mode & 7; features[4].parameter = dma_mode; #endif /* HAVE_ATA_DMA */ SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) { DEBUGF("set_features() - not RDY\n"); return -1; } for (i=0; i < (int)(sizeof(features)/sizeof(features[0])); i++) { if (identify_info[features[i].id_word] & BIT_N(features[i].id_bit)) { SET_REG(ATA_FEATURE, features[i].subcommand); SET_REG(ATA_NSECTOR, features[i].parameter); SET_REG(ATA_COMMAND, CMD_SET_FEATURES); if (!wait_for_rdy()) { DEBUGF("set_features() - CMD failed\n"); return -10 - i; } if((ATA_ALT_STATUS & STATUS_ERR) && (i != 1)) { /* some CF cards don't like advanced powermanagement even if they mark it as supported - go figure... */ if(ATA_ERROR & ERROR_ABRT) { return -20 - i; } } } } #ifdef ATA_SET_DEVICE_FEATURES ata_set_pio_timings(pio_mode); #endif #ifdef HAVE_ATA_DMA ata_dma_set_mode(dma_mode); #endif return 0; } unsigned short* ata_get_identify(void) { return identify_info; } static int init_and_check(bool hard_reset) { int rc; if (hard_reset) { /* This should reset both master and slave, we don't yet know what's in */ ata_device = 0; if (ata_hard_reset()) return -1; } rc = master_slave_detect(); if (rc) return -10 + rc; /* symptom fix: else check_registers() below may fail */ if (hard_reset && !wait_for_bsy()) return -20; rc = check_registers(); if (rc) return -30 + rc; return 0; } int ata_init(void) { int rc = 0; bool coldstart; if ( !initialized ) { mutex_init(&ata_mtx); queue_init(&ata_queue, true); } mutex_lock(&ata_mtx); /* must be called before ata_device_init() */ coldstart = ata_is_coldstart(); ata_led(false); ata_device_init(); sleeping = false; ata_enable(true); #ifdef MAX_PHYS_SECTOR_SIZE memset(§or_cache, 0, sizeof(sector_cache)); #endif if ( !initialized ) { /* First call won't have multiple thread contention - this * may return at any point without having to unlock */ mutex_unlock(&ata_mtx); if (!ide_powered()) /* somebody has switched it off */ { ide_power_enable(true); sleep(HZ/4); /* allow voltage to build up */ } #ifdef HAVE_ATA_DMA /* DMA requires INTRQ be enabled */ SET_REG(ATA_CONTROL, 0); #endif /* first try, hard reset at cold start only */ rc = init_and_check(coldstart); if (rc) { /* failed? -> second try, always with hard reset */ DEBUGF("ata: init failed, retrying...\n"); rc = init_and_check(true); if (rc) return rc; } rc = identify(); if (rc) return -40 + rc; multisectors = identify_info[47] & 0xff; if (multisectors == 0) /* Invalid multisector info, try with 16 */ multisectors = 16; DEBUGF("ata: %d sectors per ata request\n",multisectors); #ifdef MAX_PHYS_SECTOR_SIZE /* Find out the physical sector size */ if((identify_info[106] & 0xe000) == 0x6000) phys_sector_mult = BIT_N(identify_info[106] & 0x000f); else phys_sector_mult = 1; DEBUGF("ata: %d logical sectors per phys sector", phys_sector_mult); if (phys_sector_mult > (MAX_PHYS_SECTOR_SIZE/SECTOR_SIZE)) panicf("Unsupported physical sector size: %d", phys_sector_mult * SECTOR_SIZE); #endif total_sectors = identify_info[60] | (identify_info[61] << 16); #ifdef HAVE_LBA48 if (identify_info[83] & 0x0400 /* 48 bit address support */ && total_sectors == 0x0FFFFFFF) /* and disk size >= 128 GiB */ { /* (needs BigLBA addressing) */ if (identify_info[102] || identify_info[103]) panicf("Unsupported disk size: >= 2^32 sectors"); total_sectors = identify_info[100] | (identify_info[101] << 16); lba48 = true; /* use BigLBA */ } #endif rc = freeze_lock(); if (rc) return -50 + rc; rc = set_features(); if (rc) return -60 + rc; mutex_lock(&ata_mtx); /* Balance unlock below */ last_disk_activity = current_tick; #ifdef ATA_DRIVER_CLOSE ata_thread_id = #endif create_thread(ata_thread, ata_stack, sizeof(ata_stack), 0, ata_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); initialized = true; } rc = set_multiple_mode(multisectors); if (rc) rc = -70 + rc; mutex_unlock(&ata_mtx); return rc; } #ifdef ATA_DRIVER_CLOSE void ata_close(void) { unsigned int thread_id = ata_thread_id; if (thread_id == 0) return; ata_thread_id = 0; queue_post(&ata_queue, Q_CLOSE, 0); thread_wait(thread_id); } #endif /* ATA_DRIVER_CLOSE */ #if (CONFIG_LED == LED_REAL) void ata_set_led_enabled(bool enabled) { ata_led_enabled = enabled; if (ata_led_enabled) led(ata_led_on); else led(false); } #endif long ata_last_disk_activity(void) { return last_disk_activity; } int ata_spinup_time(void) { return spinup_time; } #ifdef STORAGE_GET_INFO void ata_get_info(IF_MD2(int drive,)struct storage_info *info) { unsigned short *src,*dest; static char vendor[8]; static char product[16]; static char revision[4]; #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif int i; info->sector_size = SECTOR_SIZE; info->num_sectors= total_sectors; src = (unsigned short*)&identify_info[27]; dest = (unsigned short*)vendor; for (i=0;i<4;i++) dest[i] = htobe16(src[i]); info->vendor=vendor; src = (unsigned short*)&identify_info[31]; dest = (unsigned short*)product; for (i=0;i<8;i++) dest[i] = htobe16(src[i]); info->product=product; src = (unsigned short*)&identify_info[23]; dest = (unsigned short*)revision; for (i=0;i<2;i++) dest[i] = htobe16(src[i]); info->revision=revision; } #endif #ifdef HAVE_ATA_DMA /* Returns last DMA mode as set by set_features() */ int ata_get_dma_mode(void) { return dma_mode; } /* Needed to allow updating while waiting for DMA to complete */ void ata_keep_active(void) { last_disk_activity = current_tick; } #endif #ifdef CONFIG_STORAGE_MULTI int ata_num_drives(int first_drive) { /* We don't care which logical drive number(s) we have been assigned */ (void)first_drive; return 1; } #endif