/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Alan Korr * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "ata.h" #include "kernel.h" #include "thread.h" #include "led.h" #include "cpu.h" #include "system.h" #include "debug.h" #include "panic.h" #include "usb.h" #include "power.h" #include "string.h" #include "hwcompat.h" #define SECTOR_SIZE (512) #if CONFIG_CPU == MCF5249 /* don't use sh7034 assembler routines */ #define PREFER_C_READING #define PREFER_C_WRITING #define ATA_IOBASE 0x20000000 #define ATA_DATA (*((volatile unsigned short*)(ATA_IOBASE + 0x20))) #define ATA_CONTROL (*((volatile unsigned short*)(ATA_IOBASE + 0x1c))) #define ATA_ERROR (*((volatile unsigned short*)(ATA_IOBASE + 0x22))) #define ATA_NSECTOR (*((volatile unsigned short*)(ATA_IOBASE + 0x24))) #define ATA_SECTOR (*((volatile unsigned short*)(ATA_IOBASE + 0x26))) #define ATA_LCYL (*((volatile unsigned short*)(ATA_IOBASE + 0x28))) #define ATA_HCYL (*((volatile unsigned short*)(ATA_IOBASE + 0x2a))) #define ATA_SELECT (*((volatile unsigned short*)(ATA_IOBASE + 0x2c))) #define ATA_COMMAND (*((volatile unsigned short*)(ATA_IOBASE + 0x2e))) #define STATUS_BSY 0x8000 #define STATUS_RDY 0x4000 #define STATUS_DF 0x2000 #define STATUS_DRQ 0x0800 #define STATUS_ERR 0x0100 #define ERROR_ABRT 0x0400 #define WRITE_PATTERN1 0xa5 #define WRITE_PATTERN2 0x5a #define WRITE_PATTERN3 0xaa #define WRITE_PATTERN4 0x55 #define READ_PATTERN1 0xa500 #define READ_PATTERN2 0x5a00 #define READ_PATTERN3 0xaa00 #define READ_PATTERN4 0x5500 #define SET_REG(reg,val) reg = ((val) << 8) #define SET_16BITREG(reg,val) reg = (val) #elif CONFIG_CPU == PP5020 /* don't use sh7034 assembler routines */ #define PREFER_C_READING #define PREFER_C_WRITING #define ATA_IOBASE 0xc30001e0 #define ATA_DATA (*((volatile unsigned short*)(ATA_IOBASE))) #define ATA_ERROR (*((volatile unsigned char*)(ATA_IOBASE + 0x04))) #define ATA_NSECTOR (*((volatile unsigned char*)(ATA_IOBASE + 0x08))) #define ATA_SECTOR (*((volatile unsigned char*)(ATA_IOBASE + 0x0c))) #define ATA_LCYL (*((volatile unsigned char*)(ATA_IOBASE + 0x10))) #define ATA_HCYL (*((volatile unsigned char*)(ATA_IOBASE + 0x14))) #define ATA_SELECT (*((volatile unsigned char*)(ATA_IOBASE + 0x18))) #define ATA_COMMAND (*((volatile unsigned char*)(ATA_IOBASE + 0x1c))) #define ATA_CONTROL (*((volatile unsigned char*)(0xc30003f8))) #define STATUS_BSY 0x80 #define STATUS_RDY 0x40 #define STATUS_DF 0x20 #define STATUS_DRQ 0x08 #define STATUS_ERR 0x01 #define ERROR_ABRT 0x04 #define WRITE_PATTERN1 0xa5 #define WRITE_PATTERN2 0x5a #define WRITE_PATTERN3 0xaa #define WRITE_PATTERN4 0x55 #define READ_PATTERN1 0xa5 #define READ_PATTERN2 0x5a #define READ_PATTERN3 0xaa #define READ_PATTERN4 0x55 #define SET_REG(reg,val) reg = (val) #define SET_16BITREG(reg,val) reg = (val) #elif CONFIG_CPU == SH7034 #define SWAP_WORDS #define ATA_IOBASE 0x06100100 #define ATA_DATA (*((volatile unsigned short*)0x06104100)) #define ATA_CONTROL1 ((volatile unsigned char*)0x06200206) #define ATA_CONTROL2 ((volatile unsigned char*)0x06200306) #define ATA_CONTROL (*ata_control) #define ATA_ERROR (*((volatile unsigned char*)ATA_IOBASE + 1)) #define ATA_NSECTOR (*((volatile unsigned char*)ATA_IOBASE + 2)) #define ATA_SECTOR (*((volatile unsigned char*)ATA_IOBASE + 3)) #define ATA_LCYL (*((volatile unsigned char*)ATA_IOBASE + 4)) #define ATA_HCYL (*((volatile unsigned char*)ATA_IOBASE + 5)) #define ATA_SELECT (*((volatile unsigned char*)ATA_IOBASE + 6)) #define ATA_COMMAND (*((volatile unsigned char*)ATA_IOBASE + 7)) #define STATUS_BSY 0x80 #define STATUS_RDY 0x40 #define STATUS_DF 0x20 #define STATUS_DRQ 0x08 #define STATUS_ERR 0x01 #define ERROR_ABRT 0x04 #define WRITE_PATTERN1 0xa5 #define WRITE_PATTERN2 0x5a #define WRITE_PATTERN3 0xaa #define WRITE_PATTERN4 0x55 #define READ_PATTERN1 0xa5 #define READ_PATTERN2 0x5a #define READ_PATTERN3 0xaa #define READ_PATTERN4 0x55 #define SET_REG(reg,val) reg = (val) #define SET_16BITREG(reg,val) reg = (val) #elif CONFIG_CPU == TCC730 #define PREFER_C_READING #define PREFER_C_WRITING #define SWAP_WORDS #define ATA_DATA_IDX (0xD0) #define ATA_ERROR_IDX (0xD2) #define ATA_NSECTOR_IDX (0xD4) #define ATA_SECTOR_IDX (0xD6) #define ATA_LCYL_IDX (0xD8) #define ATA_HCYL_IDX (0xDA) #define ATA_SELECT_IDX (0xDC) #define ATA_COMMAND_IDX (0xDE) #define ATA_CONTROL_IDX (0xEC) #define ATA_FEATURE_IDX ATA_ERROR_IDX #define ATA_STATUS_IDX ATA_COMMAND_IDX #define ATA_ALT_STATUS_IDX ATA_CONTROL_IDX #define SET_REG(reg, value) (ide_write_register(reg ## _IDX, value)) #define SET_16BITREG(reg, value) (ide_write_register(reg ## _IDX, value)) #define GET_REG(reg) (ide_read_register(reg)) #define ATA_DATA (GET_REG(ATA_DATA_IDX)) #define ATA_ERROR (GET_REG(ATA_ERROR_IDX)) #define ATA_NSECTOR (GET_REG(ATA_NSECTOR_IDX)) #define ATA_SECTOR (GET_REG(ATA_SECTOR_IDX)) #define ATA_LCYL (GET_REG(ATA_LCYL_IDX)) #define ATA_HCYL (GET_REG(ATA_HCYL_IDX)) #define ATA_SELECT (GET_REG(ATA_SELECT_IDX)) #define ATA_COMMAND (GET_REG(ATA_COMMAND_IDX)) #define ATA_CONTROL (GET_REG(ATA_CONTROL_IDX)) #define STATUS_BSY 0x80 #define STATUS_RDY 0x40 #define STATUS_DF 0x20 #define STATUS_DRQ 0x08 #define STATUS_ERR 0x01 #define ERROR_ABRT 0x04 #define WRITE_PATTERN1 0xa5 #define WRITE_PATTERN2 0x5a #define WRITE_PATTERN3 0xaa #define WRITE_PATTERN4 0x55 #define READ_PATTERN1 0xa5 #define READ_PATTERN2 0x5a #define READ_PATTERN3 0xaa #define READ_PATTERN4 0x55 static unsigned char ide_sector_data[SECTOR_SIZE] __attribute__ ((section(".idata"))); static unsigned ide_reg_temp __attribute__ ((section(".idata"))); void ide_write_register(int reg, int value) { /* Archos firmware code does (sometimes!) this: set the RAM speed to 8 cycles. MIUSCFG |= 0x7; */ ide_reg_temp = value; long extAddr = (long)reg << 16; ddma_transfer(1, 1, &ide_reg_temp, extAddr, 2); /* set the RAM speed to 6 cycles. unsigned char miuscfg = MIUSCFG; miuscfg = (miuscfg & ~7) | 5; */ } int ide_read_register(int reg) { /* set the RAM speed to 6 cycles. unsigned char miuscfg = MIUSCFG; miuscfg = (miuscfg & ~7) | 5; MIUSCFG = miuscfg; */ long extAddr = (long)reg << 16; ddma_transfer(0, 1, &ide_reg_temp, extAddr, 2); /* This is done like this in the archos firmware... miuscfg = MIUSCFG; miuscfg = (miuscfg & ~7) | 5; MIUSCFG = miuscfg; Though I'd expect MIUSCFG &= ~0x7; (1 cycle) */ return ide_reg_temp; } #endif #define ATA_FEATURE ATA_ERROR #define ATA_STATUS ATA_COMMAND #define ATA_ALT_STATUS ATA_CONTROL #define SELECT_DEVICE1 0x10 #define SELECT_LBA 0x40 #define CONTROL_nIEN 0x02 #define CONTROL_SRST 0x04 #define CMD_READ_SECTORS 0x20 #define CMD_WRITE_SECTORS 0x30 #define CMD_READ_MULTIPLE 0xC4 #define CMD_WRITE_MULTIPLE 0xC5 #define CMD_SET_MULTIPLE_MODE 0xC6 #define CMD_STANDBY_IMMEDIATE 0xE0 #define CMD_STANDBY 0xE2 #define CMD_IDENTIFY 0xEC #define CMD_SLEEP 0xE6 #define CMD_SET_FEATURES 0xEF #define CMD_SECURITY_FREEZE_LOCK 0xF5 #define Q_SLEEP 0 #define READ_TIMEOUT 5*HZ static struct mutex ata_mtx; char ata_device; /* device 0 (master) or 1 (slave) */ int ata_io_address; /* 0x300 or 0x200, only valid on recorder */ #if CONFIG_CPU == SH7034 static volatile unsigned char* ata_control; #endif bool old_recorder = false; int ata_spinup_time = 0; #if CONFIG_LED == LED_REAL static bool ata_led_enabled = true; static bool ata_led_on = false; #endif static bool spinup = false; static bool sleeping = true; static long sleep_timeout = 5*HZ; static bool poweroff = false; #ifdef HAVE_ATA_POWER_OFF static int poweroff_timeout = 2*HZ; #endif static long ata_stack[DEFAULT_STACK_SIZE/sizeof(long)]; static const char ata_thread_name[] = "ata"; static struct event_queue ata_queue; static bool initialized = false; static bool delayed_write = false; static unsigned char delayed_sector[SECTOR_SIZE]; static int delayed_sector_num; static long last_user_activity = -1; long last_disk_activity = -1; static int multisectors; /* number of supported multisectors */ static unsigned short identify_info[SECTOR_SIZE]; static int ata_power_on(void); static int perform_soft_reset(void); static int set_multiple_mode(int sectors); static int set_features(void); static int wait_for_bsy(void) ICODE_ATTR; static int wait_for_bsy(void) { long timeout = current_tick + HZ*30; while (TIME_BEFORE(current_tick, timeout) && (ATA_STATUS & STATUS_BSY)) { last_disk_activity = current_tick; yield(); } if (TIME_BEFORE(current_tick, timeout)) return 1; else return 0; /* timeout */ } static int wait_for_rdy(void) ICODE_ATTR; static int wait_for_rdy(void) { long timeout; if (!wait_for_bsy()) return 0; timeout = current_tick + HZ*10; while (TIME_BEFORE(current_tick, timeout) && !(ATA_ALT_STATUS & STATUS_RDY)) { last_disk_activity = current_tick; yield(); } if (TIME_BEFORE(current_tick, timeout)) return STATUS_RDY; else return 0; /* timeout */ } static int wait_for_start_of_transfer(void) ICODE_ATTR; static int wait_for_start_of_transfer(void) { if (!wait_for_bsy()) return 0; return (ATA_ALT_STATUS & (STATUS_BSY|STATUS_DRQ)) == STATUS_DRQ; } static int wait_for_end_of_transfer(void) ICODE_ATTR; static int wait_for_end_of_transfer(void) { if (!wait_for_bsy()) return 0; return (ATA_ALT_STATUS & (STATUS_RDY|STATUS_DRQ)) == STATUS_RDY; } /* Optimization: don't do 256 calls to ddma_transfer; fuse with it * as in the Archos firmware. * It actually possible to do a single dma transfer to copy a whole sector between ATA * controller & cpu internal memory. */ /* the tight loop of ata_read_sectors(), to avoid the whole in IRAM */ static void copy_read_sectors(unsigned char* buf, int wordcount) ICODE_ATTR; static void copy_read_sectors(unsigned char* buf, int wordcount) { #ifdef PREFER_C_READING unsigned short tmp = 0; if ( (unsigned long)buf & 1) { /* not 16-bit aligned, copy byte by byte */ unsigned char* bufend = buf + wordcount*2; do { /* loop compiles to 9 assembler instructions */ /* takes 14 clock cycles (2 pipeline stalls, 1 wait) */ tmp = ATA_DATA; #if defined(SWAP_WORDS) || defined(ROCKBOX_LITTLE_ENDIAN) *buf++ = tmp & 0xff; /* I assume big endian */ *buf++ = tmp >> 8; /* and don't use the SWAB16 macro */ #else *buf++ = tmp >> 8; *buf++ = tmp & 0xff; #endif } while (buf < bufend); /* tail loop is faster */ } else { /* 16-bit aligned, can do faster copy */ unsigned short* wbuf = (unsigned short*)buf; unsigned short* wbufend = wbuf + wordcount; do { /* loop compiles to 7 assembler instructions */ /* takes 12 clock cycles (2 pipeline stalls, 1 wait) */ #ifdef SWAP_WORDS *wbuf = swap16(ATA_DATA); #else *wbuf = ATA_DATA; #endif } while (++wbuf < wbufend); /* tail loop is faster */ } #else #if CONFIG_CPU == TCC730 int sectorcount = wordcount / 0x100; do { /* Slurp an entire sector with a single dma transfer */ ddma_transfer(0, 1, ide_sector_data, ATA_DATA_IDX << 16, SECTOR_SIZE); memcpy(buf, ide_sector_data, SECTOR_SIZE); buf += SECTOR_SIZE; sectorcount--; } while (sectorcount > 0); #else /* turbo-charged assembler version */ /* this assumes wordcount to be a multiple of 4 */ asm ( "add %1,%1 \n" /* wordcount -> bytecount */ "add %0,%1 \n" /* bytecount -> bufend */ "mov %0,r0 \n" "tst #1,r0 \n" /* 16-bit aligned ? */ "bt .aligned \n" /* yes, do word copy */ /* not 16-bit aligned */ "mov #-1,r3 \n" /* prepare a bit mask for high byte */ "shll8 r3 \n" /* r3 = 0xFFFFFF00 */ "mov.w @%2,r2 \n" /* read first word (1st round) */ "add #-12,%1 \n" /* adjust end address for offsets */ "mov.b r2,@%0 \n" /* store low byte of first word */ "bra .start4_b \n" /* jump into loop after next instr. */ "add #-5,%0 \n" /* adjust for dest. offsets; now even */ ".align 2 \n" ".loop4_b: \n" /* main loop: copy 4 words in a row */ "mov.w @%2,r2 \n" /* read first word (2+ round) */ "and r3,r1 \n" /* get high byte of fourth word (2+ round) */ "extu.b r2,r0 \n" /* get low byte of first word (2+ round) */ "or r1,r0 \n" /* combine with high byte of fourth word */ "mov.w r0,@(4,%0) \n" /* store at buf[4] */ "nop \n" /* maintain alignment */ ".start4_b: \n" "mov.w @%2,r1 \n" /* read second word */ "and r3,r2 \n" /* get high byte of first word */ "extu.b r1,r0 \n" /* get low byte of second word */ "or r2,r0 \n" /* combine with high byte of first word */ "mov.w r0,@(6,%0) \n" /* store at buf[6] */ "add #8,%0 \n" /* buf += 8 */ "mov.w @%2,r2 \n" /* read third word */ "and r3,r1 \n" /* get high byte of second word */ "extu.b r2,r0 \n" /* get low byte of third word */ "or r1,r0 \n" /* combine with high byte of second word */ "mov.w r0,@%0 \n" /* store at buf[0] */ "cmp/hi %0,%1 \n" /* check for end */ "mov.w @%2,r1 \n" /* read fourth word */ "and r3,r2 \n" /* get high byte of third word */ "extu.b r1,r0 \n" /* get low byte of fourth word */ "or r2,r0 \n" /* combine with high byte of third word */ "mov.w r0,@(2,%0) \n" /* store at buf[2] */ "bt .loop4_b \n" /* 24 instructions for 4 copies, takes 30 clock cycles (4 wait) */ /* avg. 7.5 cycles per word - 86% faster */ "swap.b r1,r0 \n" /* get high byte of last word */ "bra .exit \n" "mov.b r0,@(4,%0) \n" /* and store it */ ".align 2 \n" /* 16-bit aligned, loop(read and store word) */ ".aligned: \n" "mov.w @%2,r2 \n" /* read first word (1st round) */ "add #-12,%1 \n" /* adjust end address for offsets */ "bra .start4_w \n" /* jump into loop after next instr. */ "add #-6,%0 \n" /* adjust for destination offsets */ ".loop4_w: \n" /* main loop: copy 4 words in a row */ "mov.w @%2,r2 \n" /* read first word (2+ round) */ "swap.b r1,r0 \n" /* swap fourth word (2+ round) */ "mov.w r0,@(4,%0) \n" /* store fourth word (2+ round) */ "nop \n" /* maintain alignment */ ".start4_w: \n" "mov.w @%2,r1 \n" /* read second word */ "swap.b r2,r0 \n" /* swap first word */ "mov.w r0,@(6,%0) \n" /* store first word in buf[6] */ "add #8,%0 \n" /* buf += 8 */ "mov.w @%2,r2 \n" /* read third word */ "swap.b r1,r0 \n" /* swap second word */ "mov.w r0,@%0 \n" /* store second word in buf[0] */ "cmp/hi %0,%1 \n" /* check for end */ "mov.w @%2,r1 \n" /* read fourth word */ "swap.b r2,r0 \n" /* swap third word */ "mov.w r0,@(2,%0) \n" /* store third word */ "bt .loop4_w \n" /* 16 instructions for 4 copies, takes 22 clock cycles (4 wait) */ /* avg. 5.5 cycles per word - 118% faster */ "swap.b r1,r0 \n" /* swap fourth word (last round) */ "mov.w r0,@(4,%0) \n" /* and store it */ ".exit: \n" : /* outputs */ : /* inputs */ /* %0 */ "r"(buf), /* %1 */ "r"(wordcount), /* %2 */ "r"(&ATA_DATA) : /*trashed */ "r0","r1","r2","r3" ); #endif #endif } #if CONFIG_LED == LED_REAL /* Conditionally block LED access for the ATA driver, so the LED can be * (mis)used for other purposes */ static void ata_led(bool on) { ata_led_on = on; if (ata_led_enabled) { led(ata_led_on); } } #else #define ata_led(on) led(on) #endif int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { int ret = 0; long timeout; int count; void* buf; long spinup_start; #ifdef HAVE_MULTIVOLUME (void)drive; /* unused for now */ #endif mutex_lock(&ata_mtx); last_disk_activity = current_tick; spinup_start = current_tick; ata_led(true); if ( sleeping ) { spinup = true; if (poweroff) { if (ata_power_on()) { mutex_unlock(&ata_mtx); ata_led(false); return -1; } } else { if (perform_soft_reset()) { mutex_unlock(&ata_mtx); ata_led(false); return -1; } } } timeout = current_tick + READ_TIMEOUT; SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) { mutex_unlock(&ata_mtx); ata_led(false); return -2; } retry: buf = inbuf; count = incount; while (TIME_BEFORE(current_tick, timeout)) { ret = 0; last_disk_activity = current_tick; if ( count == 256 ) SET_REG(ATA_NSECTOR, 0); /* 0 means 256 sectors */ else SET_REG(ATA_NSECTOR, (unsigned char)count); SET_REG(ATA_SECTOR, start & 0xff); SET_REG(ATA_LCYL, (start >> 8) & 0xff); SET_REG(ATA_HCYL, (start >> 16) & 0xff); SET_REG(ATA_SELECT, ((start >> 24) & 0xf) | SELECT_LBA | ata_device); SET_REG(ATA_COMMAND, CMD_READ_MULTIPLE); /* wait at least 400ns between writing command and reading status */ __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); __asm__ volatile ("nop"); while (count) { int sectors; int wordcount; int status; if (!wait_for_start_of_transfer()) { /* We have timed out waiting for RDY and/or DRQ, possibly because the hard drive is shaking and has problems reading the data. We have two options: 1) Wait some more 2) Perform a soft reset and try again. We choose alternative 2. */ perform_soft_reset(); ret = -4; goto retry; } if (spinup) { ata_spinup_time = current_tick - spinup_start; spinup = false; sleeping = false; poweroff = false; } /* read the status register exactly once per loop */ status = ATA_STATUS; /* if destination address is odd, use byte copying, otherwise use word copying */ if (count >= multisectors ) sectors = multisectors; else sectors = count; wordcount = sectors * SECTOR_SIZE / 2; copy_read_sectors(buf, wordcount); /* "Device errors encountered during READ MULTIPLE commands are posted at the beginning of the block or partial block transfer, but the DRQ bit is still set to one and the data transfer shall take place, including transfer of corrupted data, if any." -- ATA specification */ if ( status & (STATUS_BSY | STATUS_ERR | STATUS_DF) ) { perform_soft_reset(); ret = -5; goto retry; } buf += sectors * SECTOR_SIZE; /* Advance one chunk of sectors */ count -= sectors; last_disk_activity = current_tick; } if(!ret && !wait_for_end_of_transfer()) { perform_soft_reset(); ret = -3; goto retry; } break; } ata_led(false); mutex_unlock(&ata_mtx); /* only flush if reading went ok */ if ( (ret == 0) && delayed_write ) ata_flush(); return ret; } /* the tight loop of ata_write_sectors(), to avoid the whole in IRAM */ static void copy_write_sectors(const unsigned char* buf, int wordcount) ICODE_ATTR; static void copy_write_sectors(const unsigned char* buf, int wordcount) { #ifdef PREFER_C_WRITING if ( (unsigned long)buf & 1) { /* not 16-bit aligned, copy byte by byte */ unsigned short tmp = 0; const unsigned char* bufend = buf + wordcount*2; do { #if defined(SWAP_WORDS) || defined(ROCKBOX_LITTLE_ENDIAN) /* SH1: loop compiles to 9 assembler instructions */ /* takes 13 clock cycles (2 pipeline stalls) */ tmp = (unsigned short) *buf++; tmp |= (unsigned short) *buf++ << 8; /* I assume big endian */ SET_16BITREG(ATA_DATA, tmp); /* and don't use the SWAB16 macro */ #else tmp = (unsigned short) *buf++ << 8; tmp |= (unsigned short) *buf++; SET_16BITREG(ATA_DATA, tmp); #endif } while (buf < bufend); /* tail loop is faster */ } else { /* 16-bit aligned, can do faster copy */ unsigned short* wbuf = (unsigned short*)buf; unsigned short* wbufend = wbuf + wordcount; do { #ifdef SWAP_WORDS /* loop compiles to 6 assembler instructions */ /* takes 10 clock cycles (2 pipeline stalls) */ SET_16BITREG(ATA_DATA, swap16(*wbuf)); #else SET_16BITREG(ATA_DATA, *wbuf); #endif } while (++wbuf < wbufend); /* tail loop is faster */ } #else /* optimized assembler version */ /* this assumes wordcount to be a multiple of 2 */ /* writing is not unrolled as much as reading, for several reasons: * - a similar instruction sequence is faster for writing than for reading * because the auto-incrementing load inctructions can be used * - writing profits from warp mode * Both of these add up to have writing faster than the more unrolled reading. */ asm ( "add %1,%1 \n" /* wordcount -> bytecount */ "add %0,%1 \n" /* bytecount -> bufend */ "mov %0,r0 \n" "tst #1,r0 \n" /* 16-bit aligned ? */ "bt .w_aligned \n" /* yes, do word copy */ /* not 16-bit aligned */ "mov #-1,r6 \n" /* prepare a bit mask for high byte */ "shll8 r6 \n" /* r6 = 0xFFFFFF00 */ "mov.b @%0+,r2 \n" /* load (initial old second) first byte */ "add #-4,%1 \n" /* adjust end address for early check */ "mov.w @%0+,r3 \n" /* load (initial) first word */ "bra .w_start2_b \n" "extu.b r2,r0 \n" /* extend unsigned */ ".align 2 \n" ".w_loop2_b: \n" /* main loop: copy 2 words in a row */ "mov.w @%0+,r3 \n" /* load first word (2+ round) */ "extu.b r2,r0 \n" /* put away low byte of second word (2+ round) */ "and r6,r2 \n" /* get high byte of second word (2+ round) */ "or r1,r2 \n" /* combine with low byte of old first word */ "mov.w r2,@%2 \n" /* write that */ ".w_start2_b: \n" "cmp/hi %0,%1 \n" /* check for end */ "mov.w @%0+,r2 \n" /* load second word */ "extu.b r3,r1 \n" /* put away low byte of first word */ "and r6,r3 \n" /* get high byte of first word */ "or r0,r3 \n" /* combine with high byte of old second word */ "mov.w r3,@%2 \n" /* write that */ "bt .w_loop2_b \n" /* 12 instructions for 2 copies, takes 14 clock cycles */ /* avg. 7 cycles per word - 85% faster */ /* the loop "overreads" 1 byte past the buffer end, however, the last */ /* byte is not written to disk */ "and r6,r2 \n" /* get high byte of last word */ "or r1,r2 \n" /* combine with low byte of old first word */ "bra .w_exit \n" "mov.w r2,@%2 \n" /* write last word */ /* 16-bit aligned, loop(load and write word) */ ".w_aligned: \n" "mov.w @%0+,r2 \n" /* load first word (1st round) */ "bra .w_start2_w \n" /* jump into loop after next instr. */ "add #-4,%1 \n" /* adjust end address for early check */ ".align 2 \n" ".w_loop2_w: \n" /* main loop: copy 2 words in a row */ "mov.w @%0+,r2 \n" /* load first word (2+ round) */ "swap.b r1,r0 \n" /* swap second word (2+ round) */ "mov.w r0,@%2 \n" /* write second word (2+ round) */ ".w_start2_w: \n" "cmp/hi %0,%1 \n" /* check for end */ "mov.w @%0+,r1 \n" /* load second word */ "swap.b r2,r0 \n" /* swap first word */ "mov.w r0,@%2 \n" /* write first word */ "bt .w_loop2_w \n" /* 8 instructions for 2 copies, takes 10 clock cycles */ /* avg. 5 cycles per word - 100% faster */ "swap.b r1,r0 \n" /* swap second word (last round) */ "mov.w r0,@%2 \n" /* and write it */ ".w_exit: \n" : /* outputs */ : /* inputs */ /* %0 */ "r"(buf), /* %1 */ "r"(wordcount), /* %2 */ "r"(&ATA_DATA) : /*trashed */ "r0","r1","r2","r3","r6" ); #endif } int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf) { int i; int ret = 0; long spinup_start; #ifdef HAVE_MULTIVOLUME (void)drive; /* unused for now */ #endif if (start == 0) panicf("Writing on sector 0\n"); mutex_lock(&ata_mtx); last_disk_activity = current_tick; spinup_start = current_tick; ata_led(true); if ( sleeping ) { spinup = true; if (poweroff) { if (ata_power_on()) { mutex_unlock(&ata_mtx); ata_led(false); return -1; } } else { if (perform_soft_reset()) { mutex_unlock(&ata_mtx); ata_led(false); return -1; } } } SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) { mutex_unlock(&ata_mtx); ata_led(false); return -2; } if ( count == 256 ) SET_REG(ATA_NSECTOR, 0); /* 0 means 256 sectors */ else SET_REG(ATA_NSECTOR, (unsigned char)count); SET_REG(ATA_SECTOR, start & 0xff); SET_REG(ATA_LCYL, (start >> 8) & 0xff); SET_REG(ATA_HCYL, (start >> 16) & 0xff); SET_REG(ATA_SELECT, ((start >> 24) & 0xf) | SELECT_LBA | ata_device); SET_REG(ATA_COMMAND, CMD_WRITE_SECTORS); for (i=0; i 25us */ /* state HRR1 */ or_b(0x02, &PADRH); /* negate _RESET */ sleep(1); /* > 2ms */ #elif CONFIG_CPU == MCF5249 and_l(~0x00080000, &GPIO_OUT); sleep(1); /* > 25us */ or_l(0x00080000, &GPIO_OUT); sleep(1); /* > 25us */ #elif CONFIG_CPU == TCC730 P6 &= ~0x40; ddma_transfer(0, 1, ide_sector_data, 0xF00000, SECTOR_SIZE); P6 |= 0x40; /* What can the following do? P1 |= 0x04; P10CON &= ~0x56; sleep(1); P10CON |= 0x56; P10 &= ~0x56; P1 &= ~0x04; sleep(1); */ #endif /* state HRR2 */ SET_REG(ATA_SELECT, ata_device); /* select the right device */ ret = wait_for_bsy(); /* Massage the return code so it is 0 on success and -1 on failure */ ret = ret?0:-1; return ret; } static int perform_soft_reset(void) { int ret; int retry_count; SET_REG(ATA_SELECT, SELECT_LBA | ata_device ); SET_REG(ATA_CONTROL, CONTROL_nIEN|CONTROL_SRST ); sleep(1); /* >= 5us */ SET_REG(ATA_CONTROL, CONTROL_nIEN); sleep(1); /* >2ms */ /* This little sucker can take up to 30 seconds */ retry_count = 8; do { ret = wait_for_rdy(); } while(!ret && retry_count--); /* Massage the return code so it is 0 on success and -1 on failure */ ret = ret?0:-1; return ret; } int ata_soft_reset(void) { int ret; mutex_lock(&ata_mtx); ret = perform_soft_reset(); mutex_unlock(&ata_mtx); return ret; } static int ata_power_on(void) { int rc; ide_power_enable(true); if( ata_hard_reset() ) return -1; rc = set_features(); if (rc) return rc * 10 - 2; if (set_multiple_mode(multisectors)) return -3; if (freeze_lock()) return -4; return 0; } static int master_slave_detect(void) { /* master? */ SET_REG(ATA_SELECT, 0); if ( ATA_STATUS & (STATUS_RDY|STATUS_BSY) ) { ata_device = 0; DEBUGF("Found master harddisk\n"); } else { /* slave? */ SET_REG(ATA_SELECT, SELECT_DEVICE1); if ( ATA_STATUS & (STATUS_RDY|STATUS_BSY) ) { ata_device = SELECT_DEVICE1; DEBUGF("Found slave harddisk\n"); } else return -1; } return 0; } #if CONFIG_CPU == SH7034 /* special archos quirk */ static void io_address_detect(void) { /* now, use the HW mask instead of probing */ if (read_hw_mask() & ATA_ADDRESS_200) { ata_io_address = 0x200; /* For debug purposes only */ old_recorder = false; ata_control = ATA_CONTROL1; } else { ata_io_address = 0x300; /* For debug purposes only */ old_recorder = true; ata_control = ATA_CONTROL2; } } #endif void ata_enable(bool on) { #if CONFIG_CPU == SH7034 if(on) and_b(~0x80, &PADRL); /* enable ATA */ else or_b(0x80, &PADRL); /* disable ATA */ or_b(0x80, &PAIORL); #elif CONFIG_CPU == MCF5249 if(on) and_l(~0x0040000, &GPIO_OUT); else or_l(0x0040000, &GPIO_OUT); or_l(0x00040000, &GPIO_ENABLE); or_l(0x00040000, &GPIO_FUNCTION); #elif CONFIG_CPU == TCC730 #elif CONFIG_CPU == PP5020 /* TODO: Implement ata_enable() */ (void)on; #endif } static int identify(void) { int i; SET_REG(ATA_SELECT, ata_device); if(!wait_for_rdy()) { DEBUGF("identify() - not RDY\n"); return -1; } SET_REG(ATA_COMMAND, CMD_IDENTIFY); if (!wait_for_start_of_transfer()) { DEBUGF("identify() - CMD failed\n"); return -2; } for (i=0; i */ }; int i; int pio_mode = 2; /* Find out the highest supported PIO mode */ if(identify_info[64] & 2) pio_mode = 4; else if(identify_info[64] & 1) pio_mode = 3; /* Update the table */ features[3].parameter = 8 + pio_mode; SET_REG(ATA_SELECT, ata_device); if (!wait_for_rdy()) { DEBUGF("set_features() - not RDY\n"); return -1; } for (i=0; features[i].id_word; i++) { if (identify_info[features[i].id_word] & (1 << features[i].id_bit)) { SET_REG(ATA_FEATURE, features[i].subcommand); SET_REG(ATA_NSECTOR, features[i].parameter); SET_REG(ATA_COMMAND, CMD_SET_FEATURES); if (!wait_for_rdy()) { DEBUGF("set_features() - CMD failed\n"); return -10 - i; } if(ATA_ALT_STATUS & STATUS_ERR) { if(ATA_ERROR & ERROR_ABRT) { return -20 - i; } } } } return 0; } unsigned short* ata_get_identify(void) { return identify_info; } static int init_and_check(bool hard_reset) { int rc; if (hard_reset) { /* This should reset both master and slave, we don't yet know what's in */ ata_device = 0; if (ata_hard_reset()) return -1; } rc = master_slave_detect(); if (rc) return -10 + rc; /* symptom fix: else check_registers() below may fail */ if (hard_reset && !wait_for_bsy()) return -20; rc = check_registers(); if (rc) return -30 + rc; return 0; } int ata_init(void) { int rc; #if CONFIG_CPU == TCC730 bool coldstart = (P1 & 0x80) == 0; #elif CONFIG_CPU == MCF5249 bool coldstart = (GPIO_FUNCTION & 0x00080000) == 0; #elif CONFIG_CPU == PP5020 bool coldstart = false; /* TODO: Implement coldstart variable */ #else bool coldstart = (PACR2 & 0x4000) != 0; #endif mutex_init(&ata_mtx); ata_led(false); #if CONFIG_CPU == SH7034 /* Port A setup */ or_b(0x02, &PAIORH); /* output for ATA reset */ or_b(0x02, &PADRH); /* release ATA reset */ PACR2 &= 0xBFFF; /* GPIO function for PA7 (IDE enable) */ #elif CONFIG_CPU == MCF5249 #ifdef HAVE_ATA_LED_CTRL /* Enable disk LED & ISD chip power control */ and_l(~0x0000240, &GPIO_OUT); or_l(0x00000240, &GPIO_ENABLE); or_l(0x00000200, &GPIO_FUNCTION); #endif /* ATA reset */ or_l(0x00080000, &GPIO_OUT); or_l(0x00080000, &GPIO_ENABLE); or_l(0x00080000, &GPIO_FUNCTION); /* FYI: The IDECONFIGx registers are set by set_cpu_frequency() */ #elif CONFIG_CPU == PP5020 /* From ipod-ide.c:ipod_ide_register() */ outl(inl(0xc3000028) | (1 << 5), 0xc3000028); outl(inl(0xc3000028) & ~0x10000000, 0xc3000028); outl(0x10, 0xc3000000); outl(0x80002150, 0xc3000004); #endif sleeping = false; ata_enable(true); if ( !initialized ) { if (!ide_powered()) /* somebody has switched it off */ { ide_power_enable(true); sleep(HZ); /* allow voltage to build up */ } #if CONFIG_CPU == SH7034 io_address_detect(); #endif /* first try, hard reset at cold start only */ rc = init_and_check(coldstart); if (rc) { /* failed? -> second try, always with hard reset */ DEBUGF("ata: init failed, retrying...\n"); rc = init_and_check(true); if (rc) return rc; } rc = identify(); if (rc) return -40 + rc; multisectors = identify_info[47] & 0xff; DEBUGF("ata: %d sectors per ata request\n",multisectors); rc = freeze_lock(); if (rc) return -50 + rc; rc = set_features(); if (rc) return -60 + rc; queue_init(&ata_queue); last_disk_activity = current_tick; create_thread(ata_thread, ata_stack, sizeof(ata_stack), ata_thread_name); initialized = true; } rc = set_multiple_mode(multisectors); if (rc) return -70 + rc; return 0; } #if CONFIG_LED == LED_REAL void ata_set_led_enabled(bool enabled) { ata_led_enabled = enabled; if (ata_led_enabled) { led(ata_led_on); } else { led(false); } } #endif