/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Richard S. La Charité III * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "lcd-remote.h" #include "kernel.h" #include "thread.h" #include #include #include "file.h" #include "debug.h" #include "system.h" #include "font.h" #include "rbunicode.h" #include "bidi.h" /*** definitions ***/ #define LCD_REMOTE_CNTL_ADC_NORMAL 0xa0 #define LCD_REMOTE_CNTL_ADC_REVERSE 0xa1 #define LCD_REMOTE_CNTL_SHL_NORMAL 0xc0 #define LCD_REMOTE_CNTL_SHL_REVERSE 0xc8 #define LCD_REMOTE_CNTL_DISPLAY_ON_OFF 0xae #define LCD_REMOTE_CNTL_ENTIRE_ON_OFF 0xa4 #define LCD_REMOTE_CNTL_REVERSE_ON_OFF 0xa6 #define LCD_REMOTE_CNTL_NOP 0xe3 #define LCD_REMOTE_CNTL_POWER_CONTROL 0x2b #define LCD_REMOTE_CNTL_SELECT_REGULATOR 0x20 #define LCD_REMOTE_CNTL_SELECT_BIAS 0xa2 #define LCD_REMOTE_CNTL_SELECT_VOLTAGE 0x81 #define LCD_REMOTE_CNTL_INIT_LINE 0x40 #define LCD_REMOTE_CNTL_SET_PAGE_ADDRESS 0xB0 #define LCD_REMOTE_CNTL_HIGHCOL 0x10 /* Upper column address */ #define LCD_REMOTE_CNTL_LOWCOL 0x00 /* Lower column address */ #define CS_LO and_l(~0x00000004, &GPIO1_OUT) #define CS_HI or_l(0x00000004, &GPIO1_OUT) #define CLK_LO and_l(~0x10000000, &GPIO_OUT) #define CLK_HI or_l(0x10000000, &GPIO_OUT) #define DATA_LO and_l(~0x00040000, &GPIO1_OUT) #define DATA_HI or_l(0x00040000, &GPIO1_OUT) #define RS_LO and_l(~0x00010000, &GPIO_OUT) #define RS_HI or_l(0x00010000, &GPIO_OUT) #define SCROLLABLE_LINES 13 /*** globals ***/ unsigned char lcd_remote_framebuffer[LCD_REMOTE_HEIGHT/8][LCD_REMOTE_WIDTH] IBSS_ATTR; static int drawmode = DRMODE_SOLID; static int xmargin = 0; static int ymargin = 0; static int curfont = FONT_SYSFIXED; #ifndef SIMULATOR static int xoffset; /* needed for flip */ /* timeout counter for deasserting /CS after access, <0 means not counting */ static int cs_countdown IDATA_ATTR = 0; #define CS_TIMEOUT (HZ/10) #ifdef HAVE_REMOTE_LCD_TICKING /* If set to true, will prevent "ticking" to headphones. */ static bool emireduce = false; static int byte_delay = 172; #endif /* remote hotplug */ static struct event_queue remote_scroll_queue; #define REMOTE_INIT_LCD 1 #define REMOTE_DEINIT_LCD 2 static bool remote_initialized = false; static int _remote_type = 0; #define LCD_REMOTE_DEFAULT_CONTRAST 42; /* cached settings values */ static bool cached_invert = false; static bool cached_flip = false; static int cached_contrast = LCD_REMOTE_DEFAULT_CONTRAST; #endif /* scrolling */ static volatile int scrolling_lines=0; /* Bitpattern of which lines are scrolling */ static void scroll_thread(void); static long scroll_stack[DEFAULT_STACK_SIZE/sizeof(long)]; static const char scroll_name[] = "remote_scroll"; static int scroll_ticks = 12; /* # of ticks between updates*/ static int scroll_delay = HZ/2; /* ticks delay before start */ static int scroll_step = 6; /* pixels per scroll step */ static int bidir_limit = 50; /* percent */ static struct scrollinfo scroll[SCROLLABLE_LINES]; static const char scroll_tick_table[16] = { /* Hz values: 1, 1.25, 1.55, 2, 2.5, 3.12, 4, 5, 6.25, 8.33, 10, 12.5, 16.7, 20, 25, 33 */ 100, 80, 64, 50, 40, 32, 25, 20, 16, 12, 10, 8, 6, 5, 4, 3 }; /*** driver routines ***/ #ifndef SIMULATOR #ifdef HAVE_REMOTE_LCD_TICKING static inline void _byte_delay(void) { asm ( "move.l %[dly],%%d0 \n" "1: \n" "subq.l #1,%%d0 \n" "bhi.s 1b \n" : /* outputs */ : /* inputs */ [dly]"d"(byte_delay) : /* clobbers */ "d0" ); } #endif /* HAVE_REMOTE_LCD_TICKING */ /* Standard low-level byte writer */ static inline void _write_byte(unsigned data) { asm volatile ( "moveq.l #8,%%d1 \n" /* bit counter */ "2: \n" "lsl.l #1,%[data] \n" /* data <<= 1, MSB of data set? */ "bcc.s 1f \n" "or.l %[dhi],(%[gpi1]) \n" /* set data bit */ ".word 0x51fa \n" /* trapf.w - shadow next insn */ "1: \n" "and.l %[dlo],(%[gpi1]) \n" /* reset data bit */ "eor.l %[cbit],(%[gpio]) \n" /* set clock bit */ "eor.l %[cbit],(%[gpio]) \n" /* reset clock bit */ "subq.l #1,%%d1 \n" "bne.s 2b \n" "or.l %[dhi],(%[gpi1]) \n" /* set data bit */ : /* outputs */ : /* inputs */ [data]"d"(data << 24), [gpio]"a"(&GPIO_OUT), [cbit]"d"(0x10000000), [gpi1]"a"(&GPIO1_OUT), [dhi] "d"(0x00040000), [dlo] "d"(~0x00040000) : /* clobbers */ "d1" ); } /* Unrolled fast low-level byte writer. Don't use with high CPU clock. */ static inline void _write_unrolled(unsigned data) { asm volatile ( "move.w %%sr,%%d4 \n" /* get current interrupt level */ "move.w #0x2700,%%sr \n" /* disable interrupts */ "move.l #0x00040000,%%d1\n" /* precalculate port values */ "move.l %%d1,%%d0 \n" /* for setting and resetting */ "or.l (%[gpi1]),%%d1 \n" /* the data bit */ "eor.l %%d1,%%d0 \n" "move.l #0x10000000,%%d3\n" /* precalculate port values */ "move.l %%d3,%%d2 \n" /* for setting and resetting */ "or.l (%[gpio]),%%d3 \n" /* the clock bit */ "eor.l %%d3,%%d2 \n" "lsl.l #1,%[data] \n" /* data <<= 1, MSB of data set? */ "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" /* set data bit */ ".word 0x51fa \n" /* trapf.w - shadow next insn */ "1: \n" "move.l %%d0,(%[gpi1]) \n" /* reset data bit */ "move.l %%d3,(%[gpio]) \n" /* set clock bit */ "move.l %%d2,(%[gpio]) \n" /* reset clock bit */ "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "move.l %%d1,(%[gpi1]) \n" ".word 0x51fa \n" "1: \n" "move.l %%d0,(%[gpi1]) \n" "move.l %%d3,(%[gpio]) \n" "move.l %%d2,(%[gpio]) \n" "move.l %%d1,(%[gpi1]) \n" /* set data bit */ "move.w %%d4,%%sr \n" /* reenable interrupts */ : /* outputs */ : /* inputs */ [data]"d"(data << 24), [gpio]"a"(&GPIO_OUT), [gpi1]"a"(&GPIO1_OUT) : /* clobbers */ "d0", "d1", "d2", "d3", "d4" ); } void lcd_remote_write_command(int cmd) { cs_countdown = 0; RS_LO; CS_LO; _write_byte(cmd); #ifdef HAVE_REMOTE_LCD_TICKING if (emireduce) _byte_delay(); #endif cs_countdown = CS_TIMEOUT; } void lcd_remote_write_command_ex(int cmd, int data) { cs_countdown = 0; RS_LO; CS_LO; #ifdef HAVE_REMOTE_LCD_TICKING if (emireduce) { _write_byte(cmd); _byte_delay(); _write_byte(data); _byte_delay(); } else #endif { _write_byte(cmd); _write_byte(data); } cs_countdown = CS_TIMEOUT; } void lcd_remote_write_data(const unsigned char* p_bytes, int count) ICODE_ATTR; void lcd_remote_write_data(const unsigned char* p_bytes, int count) { const unsigned char *p_end = p_bytes + count; cs_countdown = 0; RS_HI; CS_LO; /* This is safe as long as lcd_remote_write_data() isn't called from within * an ISR. */ if (cpu_frequency < 20000000) { while (p_bytes < p_end) _write_unrolled(*p_bytes++); } else { #ifdef HAVE_REMOTE_LCD_TICKING if (emireduce) while (p_bytes < p_end) { _write_byte(*p_bytes++); _byte_delay(); } else #endif while (p_bytes < p_end) _write_byte(*p_bytes++); } cs_countdown = CS_TIMEOUT; } #endif /* !SIMULATOR */ /*** hardware configuration ***/ int lcd_remote_default_contrast(void) { return LCD_REMOTE_DEFAULT_CONTRAST; } #ifndef SIMULATOR #ifdef HAVE_REMOTE_LCD_TICKING void lcd_remote_emireduce(bool state) { emireduce = state; } #endif void lcd_remote_powersave(bool on) { if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | (on ? 0 : 1)); lcd_remote_write_command(LCD_REMOTE_CNTL_ENTIRE_ON_OFF | (on ? 1 : 0)); } } void lcd_remote_set_contrast(int val) { cached_contrast = val; if (remote_initialized) lcd_remote_write_command_ex(LCD_REMOTE_CNTL_SELECT_VOLTAGE, val); } void lcd_remote_set_invert_display(bool yesno) { cached_invert = yesno; if (remote_initialized) lcd_remote_write_command(LCD_REMOTE_CNTL_REVERSE_ON_OFF | (yesno?1:0)); } /* turn the display upside down (call lcd_remote_update() afterwards) */ void lcd_remote_set_flip(bool yesno) { cached_flip = yesno; if (yesno) { xoffset = 0; if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_NORMAL); lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_NORMAL); } } else { xoffset = 132 - LCD_REMOTE_WIDTH; if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_REVERSE); lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_REVERSE); } } } /* The actual LCD init */ static void remote_lcd_init(void) { CS_HI; lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_BIAS | 0x0); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x5); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x6); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x7); lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_REGULATOR | 0x4); // 0x4 Select regulator @ 5.0 (default); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_INIT_LINE | 0x0); // init line lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | 0x0); // page address lcd_remote_write_command_ex(0x10, 0x00); // Column MSB + LSB lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | 1); remote_initialized = true; lcd_remote_set_flip(cached_flip); lcd_remote_set_contrast(cached_contrast); lcd_remote_set_invert_display(cached_invert); } int remote_type(void) { return _remote_type; } /* Monitor remote hotswap */ static void remote_tick(void) { static bool last_status = false; static int countdown = 0; static int init_delay = 0; bool current_status; int val; int level; current_status = ((GPIO_READ & 0x40000000) == 0); /* Only report when the status has changed */ if (current_status != last_status) { last_status = current_status; countdown = current_status ? 20*HZ : 1; } else { /* Count down until it gets negative */ if (countdown >= 0) countdown--; if (current_status) { if (!(countdown % 8)) { /* Determine which type of remote it is */ level = set_irq_level(HIGHEST_IRQ_LEVEL); val = adc_scan(ADC_REMOTEDETECT); set_irq_level(level); if (val < ADCVAL_H100_LCD_REMOTE_HOLD) { if (val < ADCVAL_H100_LCD_REMOTE) if (val < ADCVAL_H300_LCD_REMOTE) _remote_type = REMOTETYPE_H300_LCD; /* hold off */ else _remote_type = REMOTETYPE_H100_LCD; /* hold off */ else if (val < ADCVAL_H300_LCD_REMOTE_HOLD) _remote_type = REMOTETYPE_H300_LCD; /* hold on */ else _remote_type = REMOTETYPE_H100_LCD; /* hold on */ if (--init_delay <= 0) { queue_post(&remote_scroll_queue, REMOTE_INIT_LCD, 0); init_delay = 6; } } else { _remote_type = REMOTETYPE_H300_NONLCD; /* hold on or off */ } } } else { if (countdown == 0) { _remote_type = 0; queue_post(&remote_scroll_queue, REMOTE_DEINIT_LCD, 0); } } } /* handle chip select timeout */ if (cs_countdown >= 0) cs_countdown--; if (cs_countdown == 0) CS_HI; } #endif /* !SIMULATOR */ /* LCD init */ #ifdef SIMULATOR void lcd_remote_init(void) { create_thread(scroll_thread, scroll_stack, sizeof(scroll_stack), scroll_name); } #else /* !SIMULATOR */ /* Initialise ports and kick off monitor */ void lcd_remote_init(void) { #ifdef IRIVER_H300_SERIES or_l(0x10010000, &GPIO_FUNCTION); /* GPIO16: RS GPIO28: CLK */ or_l(0x00040006, &GPIO1_FUNCTION); /* GPO33: Backlight GPIO34: CS GPIO50: Data */ or_l(0x10010000, &GPIO_ENABLE); or_l(0x00040006, &GPIO1_ENABLE); #else or_l(0x10010800, &GPIO_FUNCTION); /* GPIO11: Backlight GPIO16: RS GPIO28: CLK */ or_l(0x00040004, &GPIO1_FUNCTION); /* GPIO34: CS GPIO50: Data */ or_l(0x10010800, &GPIO_ENABLE); or_l(0x00040004, &GPIO1_ENABLE); #endif lcd_remote_clear_display(); queue_clear(&remote_scroll_queue); /* no queue_init() -- private queue */ tick_add_task(remote_tick); create_thread(scroll_thread, scroll_stack, sizeof(scroll_stack), scroll_name); } /*** update functions ***/ /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_remote_update(void) ICODE_ATTR; void lcd_remote_update(void) { int y; if (!remote_initialized) return; #ifdef HAVE_REMOTE_LCD_TICKING /* adjust byte delay for emi reduction */ byte_delay = (cpu_frequency >> 18) - 30; #endif /* Copy display bitmap to hardware */ for (y = 0; y < LCD_REMOTE_HEIGHT/8; y++) { lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y); lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | ((xoffset >> 4) & 0xf)); lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | (xoffset & 0xf)); lcd_remote_write_data(lcd_remote_framebuffer[y], LCD_REMOTE_WIDTH); } } /* Update a fraction of the display. */ void lcd_remote_update_rect(int, int, int, int) ICODE_ATTR; void lcd_remote_update_rect(int x, int y, int width, int height) { int ymax; if (!remote_initialized) return; /* The Y coordinates have to work on even 8 pixel rows */ ymax = (y + height-1) >> 3; y >>= 3; if(x + width > LCD_REMOTE_WIDTH) width = LCD_REMOTE_WIDTH - x; if (width <= 0) return; /* nothing left to do, 0 is harmful to lcd_write_data() */ if(ymax >= LCD_REMOTE_HEIGHT/8) ymax = LCD_REMOTE_HEIGHT/8-1; #ifdef HAVE_REMOTE_LCD_TICKING /* adjust byte delay for emi reduction */ byte_delay = (cpu_frequency >> 18) - 30; #endif /* Copy specified rectange bitmap to hardware */ for (; y <= ymax; y++) { lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y); lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | (((x+xoffset) >> 4) & 0xf)); lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | ((x+xoffset) & 0xf)); lcd_remote_write_data(&lcd_remote_framebuffer[y][x], width); } } #endif /* !SIMULATOR */ /*** parameter handling ***/ void lcd_remote_set_drawmode(int mode) { drawmode = mode & (DRMODE_SOLID|DRMODE_INVERSEVID); } int lcd_remote_get_drawmode(void) { return drawmode; } void lcd_remote_setmargins(int x, int y) { xmargin = x; ymargin = y; } int lcd_remote_getxmargin(void) { return xmargin; } int lcd_remote_getymargin(void) { return ymargin; } void lcd_remote_setfont(int newfont) { curfont = newfont; } int lcd_remote_getstringsize(const unsigned char *str, int *w, int *h) { return font_getstringsize(str, w, h, curfont); } /*** low-level drawing functions ***/ static void setpixel(int x, int y) { lcd_remote_framebuffer[y>>3][x] |= 1 << (y & 7); } static void clearpixel(int x, int y) { lcd_remote_framebuffer[y>>3][x] &= ~(1 << (y & 7)); } static void flippixel(int x, int y) { lcd_remote_framebuffer[y>>3][x] ^= 1 << (y & 7); } static void nopixel(int x, int y) { (void)x; (void)y; } lcd_pixelfunc_type* const lcd_remote_pixelfuncs[8] = { flippixel, nopixel, setpixel, setpixel, nopixel, clearpixel, nopixel, clearpixel }; static void flipblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void flipblock(unsigned char *address, unsigned mask, unsigned bits) { *address ^= bits & mask; } static void bgblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void bgblock(unsigned char *address, unsigned mask, unsigned bits) { *address &= bits | ~mask; } static void fgblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void fgblock(unsigned char *address, unsigned mask, unsigned bits) { *address |= bits & mask; } static void solidblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void solidblock(unsigned char *address, unsigned mask, unsigned bits) { *address = (*address & ~mask) | (bits & mask); } static void flipinvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void flipinvblock(unsigned char *address, unsigned mask, unsigned bits) { *address ^= ~bits & mask; } static void bginvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void bginvblock(unsigned char *address, unsigned mask, unsigned bits) { *address &= ~(bits & mask); } static void fginvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void fginvblock(unsigned char *address, unsigned mask, unsigned bits) { *address |= ~bits & mask; } static void solidinvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void solidinvblock(unsigned char *address, unsigned mask, unsigned bits) { *address = (*address & ~mask) | (~bits & mask); } lcd_blockfunc_type* const lcd_remote_blockfuncs[8] = { flipblock, bgblock, fgblock, solidblock, flipinvblock, bginvblock, fginvblock, solidinvblock }; /*** drawing functions ***/ /* Clear the whole display */ void lcd_remote_clear_display(void) { unsigned bits = (drawmode & DRMODE_INVERSEVID) ? 0xFFu : 0; memset(lcd_remote_framebuffer, bits, sizeof lcd_remote_framebuffer); scrolling_lines = 0; } /* Set a single pixel */ void lcd_remote_drawpixel(int x, int y) { if (((unsigned)x < LCD_REMOTE_WIDTH) && ((unsigned)y < LCD_REMOTE_HEIGHT)) lcd_remote_pixelfuncs[drawmode](x, y); } /* Draw a line */ void lcd_remote_drawline(int x1, int y1, int x2, int y2) { int numpixels; int i; int deltax, deltay; int d, dinc1, dinc2; int x, xinc1, xinc2; int y, yinc1, yinc2; lcd_pixelfunc_type *pfunc = lcd_remote_pixelfuncs[drawmode]; deltax = abs(x2 - x1); deltay = abs(y2 - y1); xinc2 = 1; yinc2 = 1; if (deltax >= deltay) { numpixels = deltax; d = 2 * deltay - deltax; dinc1 = deltay * 2; dinc2 = (deltay - deltax) * 2; xinc1 = 1; yinc1 = 0; } else { numpixels = deltay; d = 2 * deltax - deltay; dinc1 = deltax * 2; dinc2 = (deltax - deltay) * 2; xinc1 = 0; yinc1 = 1; } numpixels++; /* include endpoints */ if (x1 > x2) { xinc1 = -xinc1; xinc2 = -xinc2; } if (y1 > y2) { yinc1 = -yinc1; yinc2 = -yinc2; } x = x1; y = y1; for (i = 0; i < numpixels; i++) { if (((unsigned)x < LCD_REMOTE_WIDTH) && ((unsigned)y < LCD_REMOTE_HEIGHT)) pfunc(x, y); if (d < 0) { d += dinc1; x += xinc1; y += yinc1; } else { d += dinc2; x += xinc2; y += yinc2; } } } /* Draw a horizontal line (optimised) */ void lcd_remote_hline(int x1, int x2, int y) { int x; unsigned char *dst, *dst_end; unsigned mask; lcd_blockfunc_type *bfunc; /* direction flip */ if (x2 < x1) { x = x1; x1 = x2; x2 = x; } /* nothing to draw? */ if (((unsigned)y >= LCD_REMOTE_HEIGHT) || (x1 >= LCD_REMOTE_WIDTH) || (x2 < 0)) return; /* clipping */ if (x1 < 0) x1 = 0; if (x2 >= LCD_REMOTE_WIDTH) x2 = LCD_REMOTE_WIDTH-1; bfunc = lcd_remote_blockfuncs[drawmode]; dst = &lcd_remote_framebuffer[y>>3][x1]; mask = 1 << (y & 7); dst_end = dst + x2 - x1; do bfunc(dst++, mask, 0xFFu); while (dst <= dst_end); } /* Draw a vertical line (optimised) */ void lcd_remote_vline(int x, int y1, int y2) { int ny; unsigned char *dst; unsigned mask, mask_bottom; lcd_blockfunc_type *bfunc; /* direction flip */ if (y2 < y1) { ny = y1; y1 = y2; y2 = ny; } /* nothing to draw? */ if (((unsigned)x >= LCD_REMOTE_WIDTH) || (y1 >= LCD_REMOTE_HEIGHT) || (y2 < 0)) return; /* clipping */ if (y1 < 0) y1 = 0; if (y2 >= LCD_REMOTE_HEIGHT) y2 = LCD_REMOTE_HEIGHT-1; bfunc = lcd_remote_blockfuncs[drawmode]; dst = &lcd_remote_framebuffer[y1>>3][x]; ny = y2 - (y1 & ~7); mask = 0xFFu << (y1 & 7); mask_bottom = 0xFFu >> (~ny & 7); for (; ny >= 8; ny -= 8) { bfunc(dst, mask, 0xFFu); dst += LCD_REMOTE_WIDTH; mask = 0xFFu; } mask &= mask_bottom; bfunc(dst, mask, 0xFFu); } /* Draw a rectangular box */ void lcd_remote_drawrect(int x, int y, int width, int height) { if ((width <= 0) || (height <= 0)) return; int x2 = x + width - 1; int y2 = y + height - 1; lcd_remote_vline(x, y, y2); lcd_remote_vline(x2, y, y2); lcd_remote_hline(x, x2, y); lcd_remote_hline(x, x2, y2); } /* Fill a rectangular area */ void lcd_remote_fillrect(int x, int y, int width, int height) { int ny; unsigned char *dst, *dst_end; unsigned mask, mask_bottom; unsigned bits = 0; lcd_blockfunc_type *bfunc; bool fillopt = false; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_REMOTE_WIDTH) || (y >= LCD_REMOTE_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; /* clipping */ if (x < 0) { width += x; x = 0; } if (y < 0) { height += y; y = 0; } if (x + width > LCD_REMOTE_WIDTH) width = LCD_REMOTE_WIDTH - x; if (y + height > LCD_REMOTE_HEIGHT) height = LCD_REMOTE_HEIGHT - y; if (drawmode & DRMODE_INVERSEVID) { if (drawmode & DRMODE_BG) { fillopt = true; } } else { if (drawmode & DRMODE_FG) { fillopt = true; bits = 0xFFu; } } bfunc = lcd_remote_blockfuncs[drawmode]; dst = &lcd_remote_framebuffer[y>>3][x]; ny = height - 1 + (y & 7); mask = 0xFFu << (y & 7); mask_bottom = 0xFFu >> (~ny & 7); for (; ny >= 8; ny -= 8) { if (fillopt && (mask == 0xFFu)) memset(dst, bits, width); else { unsigned char *dst_row = dst; dst_end = dst_row + width; do bfunc(dst_row++, mask, 0xFFu); while (dst_row < dst_end); } dst += LCD_REMOTE_WIDTH; mask = 0xFFu; } mask &= mask_bottom; if (fillopt && (mask == 0xFFu)) memset(dst, bits, width); else { dst_end = dst + width; do bfunc(dst++, mask, 0xFFu); while (dst < dst_end); } } /* About Rockbox' internal bitmap format: * * A bitmap contains one bit for every pixel that defines if that pixel is * black (1) or white (0). Bits within a byte are arranged vertically, LSB * at top. * The bytes are stored in row-major order, with byte 0 being top left, * byte 1 2nd from left etc. The first row of bytes defines pixel rows * 0..7, the second row defines pixel row 8..15 etc. * * This is the same as the internal lcd hw format. */ /* Draw a partial bitmap */ void lcd_remote_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) ICODE_ATTR; void lcd_remote_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) { int shift, ny; unsigned char *dst, *dst_end; unsigned mask, mask_bottom; lcd_blockfunc_type *bfunc; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_REMOTE_WIDTH) || (y >= LCD_REMOTE_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; /* clipping */ if (x < 0) { width += x; src_x -= x; x = 0; } if (y < 0) { height += y; src_y -= y; y = 0; } if (x + width > LCD_REMOTE_WIDTH) width = LCD_REMOTE_WIDTH - x; if (y + height > LCD_REMOTE_HEIGHT) height = LCD_REMOTE_HEIGHT - y; src += stride * (src_y >> 3) + src_x; /* move starting point */ src_y &= 7; y -= src_y; dst = &lcd_remote_framebuffer[y>>3][x]; shift = y & 7; ny = height - 1 + shift + src_y; bfunc = lcd_remote_blockfuncs[drawmode]; mask = 0xFFu << (shift + src_y); mask_bottom = 0xFFu >> (~ny & 7); if (shift == 0) { bool copyopt = (drawmode == DRMODE_SOLID); for (; ny >= 8; ny -= 8) { if (copyopt && (mask == 0xFFu)) memcpy(dst, src, width); else { const unsigned char *src_row = src; unsigned char *dst_row = dst; dst_end = dst_row + width; do bfunc(dst_row++, mask, *src_row++); while (dst_row < dst_end); } src += stride; dst += LCD_REMOTE_WIDTH; mask = 0xFFu; } mask &= mask_bottom; if (copyopt && (mask == 0xFFu)) memcpy(dst, src, width); else { dst_end = dst + width; do bfunc(dst++, mask, *src++); while (dst < dst_end); } } else { dst_end = dst + width; do { const unsigned char *src_col = src++; unsigned char *dst_col = dst++; unsigned mask_col = mask; unsigned data = 0; for (y = ny; y >= 8; y -= 8) { data |= *src_col << shift; if (mask_col & 0xFFu) { bfunc(dst_col, mask_col, data); mask_col = 0xFFu; } else mask_col >>= 8; src_col += stride; dst_col += LCD_REMOTE_WIDTH; data >>= 8; } data |= *src_col << shift; bfunc(dst_col, mask_col & mask_bottom, data); } while (dst < dst_end); } } /* Draw a full bitmap */ void lcd_remote_bitmap(const unsigned char *src, int x, int y, int width, int height) { lcd_remote_bitmap_part(src, 0, 0, width, x, y, width, height); } /* put a string at a given pixel position, skipping first ofs pixel columns */ static void lcd_remote_putsxyofs(int x, int y, int ofs, const unsigned char *str) { unsigned short ch; unsigned short *ucs; struct font* pf = font_get(curfont); ucs = bidi_l2v(str, 1); while ((ch = *ucs++) != 0 && x < LCD_REMOTE_WIDTH) { int width; const unsigned char *bits; /* get proportional width and glyph bits */ width = font_get_width(pf, ch); if (ofs > width) { ofs -= width; continue; } bits = font_get_bits(pf, ch); lcd_remote_bitmap_part(bits, ofs, 0, width, x, y, width - ofs, pf->height); x += width - ofs; ofs = 0; } } /* put a string at a given pixel position */ void lcd_remote_putsxy(int x, int y, const unsigned char *str) { lcd_remote_putsxyofs(x, y, 0, str); } /*** line oriented text output ***/ /* put a string at a given char position */ void lcd_remote_puts(int x, int y, const unsigned char *str) { lcd_remote_puts_style_offset(x, y, str, STYLE_DEFAULT, 0); } void lcd_remote_puts_style(int x, int y, const unsigned char *str, int style) { lcd_remote_puts_style_offset(x, y, str, style, 0); } void lcd_remote_puts_offset(int x, int y, const unsigned char *str, int offset) { lcd_remote_puts_style_offset(x, y, str, STYLE_DEFAULT, offset); } /* put a string at a given char position, style, and pixel position, * skipping first offset pixel columns */ void lcd_remote_puts_style_offset(int x, int y, const unsigned char *str, int style, int offset) { int xpos,ypos,w,h,xrect; int lastmode = drawmode; /* make sure scrolling is turned off on the line we are updating */ scrolling_lines &= ~(1 << y); if(!str || !str[0]) return; lcd_remote_getstringsize(str, &w, &h); xpos = xmargin + x*w / utf8length((char *)str); ypos = ymargin + y*h; drawmode = (style & STYLE_INVERT) ? (DRMODE_SOLID|DRMODE_INVERSEVID) : DRMODE_SOLID; lcd_remote_putsxyofs(xpos, ypos, offset, str); drawmode ^= DRMODE_INVERSEVID; xrect = xpos + MAX(w - offset, 0); lcd_remote_fillrect(xrect, ypos, LCD_REMOTE_WIDTH - xrect, h); drawmode = lastmode; } /*** scrolling ***/ /* Reverse the invert setting of the scrolling line (if any) at given char position. Setting will go into affect next time line scrolls. */ void lcd_remote_invertscroll(int x, int y) { struct scrollinfo* s; (void)x; s = &scroll[y]; s->invert = !s->invert; } void lcd_remote_stop_scroll(void) { scrolling_lines=0; } void lcd_remote_scroll_speed(int speed) { scroll_ticks = scroll_tick_table[speed]; } void lcd_remote_scroll_step(int step) { scroll_step = step; } void lcd_remote_scroll_delay(int ms) { scroll_delay = ms / (HZ / 10); } void lcd_remote_bidir_scroll(int percent) { bidir_limit = percent; } void lcd_remote_puts_scroll(int x, int y, const unsigned char *string) { lcd_remote_puts_scroll_style(x, y, string, STYLE_DEFAULT); } void lcd_remote_puts_scroll_style(int x, int y, const unsigned char *string, int style) { lcd_remote_puts_scroll_style_offset(x, y, string, style, 0); } void lcd_remote_puts_scroll_offset(int x, int y, const unsigned char *string, int offset) { lcd_remote_puts_scroll_style_offset(x, y, string, STYLE_DEFAULT, offset); } void lcd_remote_puts_scroll_style_offset(int x, int y, const unsigned char *string, int style, int offset) { struct scrollinfo* s; int w, h; s = &scroll[y]; s->start_tick = current_tick + scroll_delay; s->invert = false; if (style & STYLE_INVERT) { s->invert = true; lcd_remote_puts_style_offset(x,y,string,STYLE_INVERT,offset); } else lcd_remote_puts_offset(x,y,string,offset); lcd_remote_getstringsize(string, &w, &h); if (LCD_REMOTE_WIDTH - x * 8 - xmargin < w) { /* prepare scroll line */ char *end; memset(s->line, 0, sizeof s->line); strcpy(s->line, (char *)string); /* get width */ s->width = lcd_remote_getstringsize((unsigned char *)s->line, &w, &h); /* scroll bidirectional or forward only depending on the string width */ if ( bidir_limit ) { s->bidir = s->width < (LCD_REMOTE_WIDTH - xmargin) * (100 + bidir_limit) / 100; } else s->bidir = false; if (!s->bidir) { /* add spaces if scrolling in the round */ strcat(s->line, " "); /* get new width incl. spaces */ s->width = lcd_remote_getstringsize((unsigned char *)s->line, &w, &h); } end = strchr(s->line, '\0'); strncpy(end, (char *)string, LCD_REMOTE_WIDTH/2); s->len = utf8length((char *)string); s->offset = offset; s->startx = x; s->backward = false; scrolling_lines |= (1<= 0) continue; #endif for ( index = 0; index < SCROLLABLE_LINES; index++ ) { /* really scroll? */ if ( !(scrolling_lines&(1<start_tick)) continue; if (s->backward) s->offset -= scroll_step; else s->offset += scroll_step; pf = font_get(curfont); xpos = xmargin + s->startx * s->width / s->len; ypos = ymargin + index * pf->height; if (s->bidir) { /* scroll bidirectional */ if (s->offset <= 0) { /* at beginning of line */ s->offset = 0; s->backward = false; s->start_tick = current_tick + scroll_delay * 2; } if (s->offset >= s->width - (LCD_REMOTE_WIDTH - xpos)) { /* at end of line */ s->offset = s->width - (LCD_REMOTE_WIDTH - xpos); s->backward = true; s->start_tick = current_tick + scroll_delay * 2; } } else { /* scroll forward the whole time */ if (s->offset >= s->width) s->offset %= s->width; } lastmode = drawmode; drawmode = s->invert ? (DRMODE_SOLID|DRMODE_INVERSEVID) : DRMODE_SOLID; lcd_remote_putsxyofs(xpos, ypos, s->offset, s->line); drawmode = lastmode; lcd_remote_update_rect(xpos, ypos, LCD_REMOTE_WIDTH - xpos, pf->height); } next_tick += scroll_ticks; delay = next_tick - current_tick - 1; if (delay < 0) { next_tick = current_tick + 1; delay = 0; } } }