/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2004 by Linus Nielsen Feltzing * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "thread.h" #include #include #include "file.h" #include "debug.h" #include "system.h" #include "font.h" #include "bidi.h" /*** definitions ***/ /* LCD command codes */ #define LCD_CNTL_POWER_CONTROL 0x25 #define LCD_CNTL_VOLTAGE_SELECT 0x2b #define LCD_CNTL_LINE_INVERT_DRIVE 0x36 #define LCD_CNTL_GRAY_SCALE_PATTERN 0x39 #define LCD_CNTL_TEMP_GRADIENT_SELECT 0x4e #define LCD_CNTL_OSC_FREQUENCY 0x5f #define LCD_CNTL_ON_OFF 0xae #define LCD_CNTL_OSC_ON_OFF 0xaa #define LCD_CNTL_OFF_MODE 0xbe #define LCD_CNTL_REVERSE 0xa6 #define LCD_CNTL_ALL_LIGHTING 0xa4 #define LCD_CNTL_COMMON_OUTPUT_STATUS 0xc4 #define LCD_CNTL_COLUMN_ADDRESS_DIR 0xa0 #define LCD_CNTL_NLINE_ON_OFF 0xe4 #define LCD_CNTL_DISPLAY_MODE 0x66 #define LCD_CNTL_DUTY_SET 0x6d #define LCD_CNTL_ELECTRONIC_VOLUME 0x81 #define LCD_CNTL_DATA_INPUT_DIR 0x84 #define LCD_CNTL_DISPLAY_START_LINE 0x8a #define LCD_CNTL_PAGE 0xb1 #define LCD_CNTL_COLUMN 0x13 #define LCD_CNTL_DATA_WRITE 0x1d #define SCROLLABLE_LINES 26 /*** globals ***/ unsigned char lcd_framebuffer[LCD_HEIGHT/4][LCD_WIDTH] IBSS_ATTR; static const unsigned char dibits[16] ICONST_ATTR = { 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F, 0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF }; static unsigned fg_pattern IDATA_ATTR = 0xFF; /* initially black */ static unsigned bg_pattern IDATA_ATTR = 0x00; /* initially white */ static int drawmode = DRMODE_SOLID; static int xmargin = 0; static int ymargin = 0; static int curfont = FONT_SYSFIXED; /* scrolling */ static volatile int scrolling_lines=0; /* Bitpattern of which lines are scrolling */ static void scroll_thread(void); static long scroll_stack[DEFAULT_STACK_SIZE/sizeof(long)]; static const char scroll_name[] = "scroll"; static int scroll_ticks = 12; /* # of ticks between updates*/ static int scroll_delay = HZ/2; /* ticks delay before start */ static int scroll_step = 6; /* pixels per scroll step */ static int bidir_limit = 50; /* percent */ static struct scrollinfo scroll[SCROLLABLE_LINES]; static const char scroll_tick_table[16] = { /* Hz values: 1, 1.25, 1.55, 2, 2.5, 3.12, 4, 5, 6.25, 8.33, 10, 12.5, 16.7, 20, 25, 33 */ 100, 80, 64, 50, 40, 32, 25, 20, 16, 12, 10, 8, 6, 5, 4, 3 }; /*** driver code is in lcd.S ***/ /*** hardware configuration ***/ int lcd_default_contrast(void) { return 28; } #ifndef SIMULATOR void lcd_set_contrast(int val) { lcd_write_command_ex(LCD_CNTL_ELECTRONIC_VOLUME, val, -1); } void lcd_set_invert_display(bool yesno) { lcd_write_command(LCD_CNTL_REVERSE | (yesno?1:0)); } /* turn the display upside down (call lcd_update() afterwards) */ void lcd_set_flip(bool yesno) { if (yesno) { lcd_write_command(LCD_CNTL_COLUMN_ADDRESS_DIR | 1); lcd_write_command(LCD_CNTL_COMMON_OUTPUT_STATUS | 0); lcd_write_command_ex(LCD_CNTL_DUTY_SET, 0x20, 0); } else { lcd_write_command(LCD_CNTL_COLUMN_ADDRESS_DIR | 0); lcd_write_command(LCD_CNTL_COMMON_OUTPUT_STATUS | 1); lcd_write_command_ex(LCD_CNTL_DUTY_SET, 0x20, 1); } } /* Rolls up the lcd display by the specified amount of lines. * Lines that are rolled out over the top of the screen are * rolled in from the bottom again. This is a hardware * remapping only and all operations on the lcd are affected. * -> * @param int lines - The number of lines that are rolled. * The value must be 0 <= pixels < LCD_HEIGHT. */ void lcd_roll(int lines) { lines &= LCD_HEIGHT-1; lcd_write_command_ex(LCD_CNTL_DISPLAY_START_LINE, lines, -1); } #endif /* !SIMULATOR */ /* LCD init */ #ifdef SIMULATOR void lcd_init(void) { create_thread(scroll_thread, scroll_stack, sizeof(scroll_stack), scroll_name); } #else void lcd_init(void) { /* GPO35 is the LCD A0 pin GPO46 is LCD RESET */ or_l(0x00004008, &GPIO1_OUT); or_l(0x00004008, &GPIO1_ENABLE); or_l(0x00004008, &GPIO1_FUNCTION); /* Reset LCD */ sleep(1); and_l(~0x00004000, &GPIO1_OUT); sleep(1); or_l(0x00004000, &GPIO1_OUT); sleep(1); lcd_write_command(LCD_CNTL_COLUMN_ADDRESS_DIR | 0); /* Normal */ lcd_write_command(LCD_CNTL_COMMON_OUTPUT_STATUS | 1); /* Reverse dir */ lcd_write_command(LCD_CNTL_REVERSE | 0); /* Reverse OFF */ lcd_write_command(LCD_CNTL_ALL_LIGHTING | 0); /* Normal */ lcd_write_command_ex(LCD_CNTL_DUTY_SET, 0x20, 1); lcd_write_command(LCD_CNTL_OFF_MODE | 1); /* OFF -> VCC on drivers */ lcd_write_command_ex(LCD_CNTL_VOLTAGE_SELECT, 3, -1); lcd_write_command_ex(LCD_CNTL_ELECTRONIC_VOLUME, 0x1c, -1); lcd_write_command_ex(LCD_CNTL_TEMP_GRADIENT_SELECT, 0, -1); lcd_write_command_ex(LCD_CNTL_LINE_INVERT_DRIVE, 0x10, -1); lcd_write_command(LCD_CNTL_NLINE_ON_OFF | 1); /* N-line ON */ lcd_write_command_ex(LCD_CNTL_OSC_FREQUENCY, 3, -1); lcd_write_command(LCD_CNTL_OSC_ON_OFF | 1); /* Oscillator ON */ lcd_write_command_ex(LCD_CNTL_POWER_CONTROL, 0x16, -1); sleep(HZ/10); /* 100 ms pause */ lcd_write_command_ex(LCD_CNTL_POWER_CONTROL, 0x17, -1); lcd_write_command_ex(LCD_CNTL_DISPLAY_START_LINE, 0, -1); lcd_write_command_ex(LCD_CNTL_GRAY_SCALE_PATTERN, 0x42, -1); lcd_write_command_ex(LCD_CNTL_DISPLAY_MODE, 0, -1); /* Greyscale mode */ lcd_write_command(LCD_CNTL_DATA_INPUT_DIR | 0); /* Column mode */ lcd_clear_display(); lcd_update(); lcd_write_command(LCD_CNTL_ON_OFF | 1); /* LCD ON */ create_thread(scroll_thread, scroll_stack, sizeof(scroll_stack), scroll_name); } /*** update functions ***/ /* Performance function that works with an external buffer note that by and bheight are in 8-pixel units! */ void lcd_blit(const unsigned char* data, int x, int by, int width, int bheight, int stride) { const unsigned char *src, *src_end; unsigned char *dst_u, *dst_l; static unsigned char upper[LCD_WIDTH] IBSS_ATTR; static unsigned char lower[LCD_WIDTH] IBSS_ATTR; unsigned int byte; by *= 2; while (bheight--) { src = data; src_end = data + width; dst_u = upper; dst_l = lower; do { byte = *src++; *dst_u++ = dibits[byte & 0x0F]; byte >>= 4; *dst_l++ = dibits[byte & 0x0F]; } while (src < src_end); lcd_write_command_ex(LCD_CNTL_PAGE, by++, -1); lcd_write_command_ex(LCD_CNTL_COLUMN, x, -1); lcd_write_command(LCD_CNTL_DATA_WRITE); lcd_write_data(upper, width); lcd_write_command_ex(LCD_CNTL_PAGE, by++, -1); lcd_write_command_ex(LCD_CNTL_COLUMN, x, -1); lcd_write_command(LCD_CNTL_DATA_WRITE); lcd_write_data(lower, width); data += stride; } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) ICODE_ATTR; void lcd_update(void) { int y; /* Copy display bitmap to hardware */ for (y = 0; y < LCD_HEIGHT/4; y++) { lcd_write_command_ex(LCD_CNTL_PAGE, y, -1); lcd_write_command_ex(LCD_CNTL_COLUMN, 0, -1); lcd_write_command(LCD_CNTL_DATA_WRITE); lcd_write_data (lcd_framebuffer[y], LCD_WIDTH); } } /* Update a fraction of the display. */ void lcd_update_rect(int, int, int, int) ICODE_ATTR; void lcd_update_rect(int x, int y, int width, int height) { int ymax; /* The Y coordinates have to work on even 8 pixel rows */ ymax = (y + height-1) >> 2; y >>= 2; if(x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (width <= 0) return; /* nothing left to do, 0 is harmful to lcd_write_data() */ if(ymax >= LCD_HEIGHT/4) ymax = LCD_HEIGHT/4-1; /* Copy specified rectange bitmap to hardware */ for (; y <= ymax; y++) { lcd_write_command_ex(LCD_CNTL_PAGE, y, -1); lcd_write_command_ex(LCD_CNTL_COLUMN, x, -1); lcd_write_command(LCD_CNTL_DATA_WRITE); lcd_write_data (&lcd_framebuffer[y][x], width); } } #endif /* !SIMULATOR */ /*** parameter handling ***/ void lcd_set_drawmode(int mode) { drawmode = mode & (DRMODE_SOLID|DRMODE_INVERSEVID); } int lcd_get_drawmode(void) { return drawmode; } void lcd_set_foreground(int brightness) { fg_pattern = 0x55 * (~brightness & 3); } int lcd_get_foreground(void) { return ~fg_pattern & 3; } void lcd_set_background(int brightness) { bg_pattern = 0x55 * (~brightness & 3); } int lcd_get_background(void) { return ~bg_pattern & 3; } void lcd_set_drawinfo(int mode, int fg_brightness, int bg_brightness) { lcd_set_drawmode(mode); lcd_set_foreground(fg_brightness); lcd_set_background(bg_brightness); } void lcd_setmargins(int x, int y) { xmargin = x; ymargin = y; } int lcd_getxmargin(void) { return xmargin; } int lcd_getymargin(void) { return ymargin; } void lcd_setfont(int newfont) { curfont = newfont; } int lcd_getstringsize(const unsigned char *str, int *w, int *h) { return font_getstringsize(str, w, h, curfont); } /*** low-level drawing functions ***/ static void setpixel(int x, int y) { unsigned char *data = &lcd_framebuffer[y>>2][x]; unsigned mask = 3 << (2 * (y & 3)); *data = (*data & ~mask) | (fg_pattern & mask); } static void clearpixel(int x, int y) { unsigned char *data = &lcd_framebuffer[y>>2][x]; unsigned mask = 3 << (2 * (y & 3)); *data = (*data & ~mask) | (bg_pattern & mask); } static void flippixel(int x, int y) { lcd_framebuffer[y>>2][x] ^= 3 << (2 * (y & 3)); } static void nopixel(int x, int y) { (void)x; (void)y; } lcd_pixelfunc_type* const lcd_pixelfuncs[8] = { flippixel, nopixel, setpixel, setpixel, nopixel, clearpixel, nopixel, clearpixel }; /* 'mask' and 'bits' contain 2 bits per pixel */ static void flipblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void flipblock(unsigned char *address, unsigned mask, unsigned bits) { *address ^= bits & mask; } static void bgblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void bgblock(unsigned char *address, unsigned mask, unsigned bits) { mask &= ~bits; *address = (*address & ~mask) | (bg_pattern & mask); } static void fgblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void fgblock(unsigned char *address, unsigned mask, unsigned bits) { mask &= bits; *address = (*address & ~mask) | (fg_pattern & mask); } static void solidblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void solidblock(unsigned char *address, unsigned mask, unsigned bits) { *address = (*address & ~mask) | (bits & mask & fg_pattern) | (~bits & mask & bg_pattern); } static void flipinvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void flipinvblock(unsigned char *address, unsigned mask, unsigned bits) { *address ^= ~bits & mask; } static void bginvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void bginvblock(unsigned char *address, unsigned mask, unsigned bits) { mask &= bits; *address = (*address & ~mask) | (bg_pattern & mask); } static void fginvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void fginvblock(unsigned char *address, unsigned mask, unsigned bits) { mask &= ~bits; *address = (*address & ~mask) | (fg_pattern & mask); } static void solidinvblock(unsigned char *address, unsigned mask, unsigned bits) ICODE_ATTR; static void solidinvblock(unsigned char *address, unsigned mask, unsigned bits) { *address = (*address & ~mask) | (~bits & mask & fg_pattern) | (bits & mask & bg_pattern); } lcd_blockfunc_type* const lcd_blockfuncs[8] = { flipblock, bgblock, fgblock, solidblock, flipinvblock, bginvblock, fginvblock, solidinvblock }; /*** drawing functions ***/ /* Clear the whole display */ void lcd_clear_display(void) { unsigned bits = (drawmode & DRMODE_INVERSEVID) ? fg_pattern : bg_pattern; memset(lcd_framebuffer, bits, sizeof lcd_framebuffer); scrolling_lines = 0; } /* Set a single pixel */ void lcd_drawpixel(int x, int y) { if (((unsigned)x < LCD_WIDTH) && ((unsigned)y < LCD_HEIGHT)) lcd_pixelfuncs[drawmode](x, y); } /* Draw a line */ void lcd_drawline(int x1, int y1, int x2, int y2) { int numpixels; int i; int deltax, deltay; int d, dinc1, dinc2; int x, xinc1, xinc2; int y, yinc1, yinc2; lcd_pixelfunc_type *pfunc = lcd_pixelfuncs[drawmode]; deltax = abs(x2 - x1); deltay = abs(y2 - y1); xinc2 = 1; yinc2 = 1; if (deltax >= deltay) { numpixels = deltax; d = 2 * deltay - deltax; dinc1 = deltay * 2; dinc2 = (deltay - deltax) * 2; xinc1 = 1; yinc1 = 0; } else { numpixels = deltay; d = 2 * deltax - deltay; dinc1 = deltax * 2; dinc2 = (deltax - deltay) * 2; xinc1 = 0; yinc1 = 1; } numpixels++; /* include endpoints */ if (x1 > x2) { xinc1 = -xinc1; xinc2 = -xinc2; } if (y1 > y2) { yinc1 = -yinc1; yinc2 = -yinc2; } x = x1; y = y1; for (i = 0; i < numpixels; i++) { if (((unsigned)x < LCD_WIDTH) && ((unsigned)y < LCD_HEIGHT)) pfunc(x, y); if (d < 0) { d += dinc1; x += xinc1; y += yinc1; } else { d += dinc2; x += xinc2; y += yinc2; } } } /* Draw a horizontal line (optimised) */ void lcd_hline(int x1, int x2, int y) { int x; unsigned char *dst, *dst_end; unsigned mask; lcd_blockfunc_type *bfunc; /* direction flip */ if (x2 < x1) { x = x1; x1 = x2; x2 = x; } /* nothing to draw? */ if (((unsigned)y >= LCD_HEIGHT) || (x1 >= LCD_WIDTH) || (x2 < 0)) return; /* clipping */ if (x1 < 0) x1 = 0; if (x2 >= LCD_WIDTH) x2 = LCD_WIDTH-1; bfunc = lcd_blockfuncs[drawmode]; dst = &lcd_framebuffer[y>>2][x1]; mask = 3 << (2 * (y & 3)); dst_end = dst + x2 - x1; do bfunc(dst++, mask, 0xFFu); while (dst <= dst_end); } /* Draw a vertical line (optimised) */ void lcd_vline(int x, int y1, int y2) { int ny; unsigned char *dst; unsigned mask, mask_bottom; lcd_blockfunc_type *bfunc; /* direction flip */ if (y2 < y1) { ny = y1; y1 = y2; y2 = ny; } /* nothing to draw? */ if (((unsigned)x >= LCD_WIDTH) || (y1 >= LCD_HEIGHT) || (y2 < 0)) return; /* clipping */ if (y1 < 0) y1 = 0; if (y2 >= LCD_HEIGHT) y2 = LCD_HEIGHT-1; bfunc = lcd_blockfuncs[drawmode]; dst = &lcd_framebuffer[y1>>2][x]; ny = y2 - (y1 & ~3); mask = 0xFFu << (2 * (y1 & 3)); mask_bottom = 0xFFu >> (2 * (~ny & 3)); for (; ny >= 4; ny -= 4) { bfunc(dst, mask, 0xFFu); dst += LCD_WIDTH; mask = 0xFFu; } mask &= mask_bottom; bfunc(dst, mask, 0xFFu); } /* Draw a rectangular box */ void lcd_drawrect(int x, int y, int width, int height) { if ((width <= 0) || (height <= 0)) return; int x2 = x + width - 1; int y2 = y + height - 1; lcd_vline(x, y, y2); lcd_vline(x2, y, y2); lcd_hline(x, x2, y); lcd_hline(x, x2, y2); } /* Fill a rectangular area */ void lcd_fillrect(int x, int y, int width, int height) { int ny; unsigned char *dst, *dst_end; unsigned mask, mask_bottom; unsigned bits = fg_pattern; lcd_blockfunc_type *bfunc; bool fillopt; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_WIDTH) || (y >= LCD_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; /* clipping */ if (x < 0) { width += x; x = 0; } if (y < 0) { height += y; y = 0; } if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; fillopt = (drawmode & DRMODE_INVERSEVID) ? (drawmode & DRMODE_BG) : (drawmode & DRMODE_FG); if (fillopt &&(drawmode & DRMODE_INVERSEVID)) bits = bg_pattern; bfunc = lcd_blockfuncs[drawmode]; dst = &lcd_framebuffer[y>>2][x]; ny = height - 1 + (y & 3); mask = 0xFFu << (2 * (y & 3)); mask_bottom = 0xFFu >> (2 * (~ny & 3)); for (; ny >= 4; ny -= 4) { if (fillopt && (mask == 0xFFu)) memset(dst, bits, width); else { unsigned char *dst_row = dst; dst_end = dst_row + width; do bfunc(dst_row++, mask, 0xFFu); while (dst_row < dst_end); } dst += LCD_WIDTH; mask = 0xFFu; } mask &= mask_bottom; if (fillopt && (mask == 0xFFu)) memset(dst, bits, width); else { dst_end = dst + width; do bfunc(dst++, mask, 0xFFu); while (dst < dst_end); } } /* About Rockbox' internal monochrome bitmap format: * * A bitmap contains one bit for every pixel that defines if that pixel is * black (1) or white (0). Bits within a byte are arranged vertically, LSB * at top. * The bytes are stored in row-major order, with byte 0 being top left, * byte 1 2nd from left etc. The first row of bytes defines pixel rows * 0..7, the second row defines pixel row 8..15 etc. * * This is similar to the internal lcd hw format. */ /* Draw a partial monochrome bitmap */ void lcd_mono_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) ICODE_ATTR; void lcd_mono_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) { int shift, ny; unsigned char *dst, *dst_end; unsigned mask, mask_bottom; lcd_blockfunc_type *bfunc; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_WIDTH) || (y >= LCD_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; /* clipping */ if (x < 0) { width += x; src_x -= x; x = 0; } if (y < 0) { height += y; src_y -= y; y = 0; } if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; src += stride * (src_y >> 3) + src_x; /* move starting point */ src_y &= 7; y -= src_y; dst = &lcd_framebuffer[y>>2][x]; shift = y & 3; ny = height - 1 + shift + src_y; bfunc = lcd_blockfuncs[drawmode]; mask = 0xFFu << (shift + src_y); mask_bottom = 0xFFu >> (~ny & 7); if (shift == 0) { unsigned dmask1, dmask2, data; for (; ny >= 8; ny -= 8) { const unsigned char *src_row = src; unsigned char *dst_row = dst + LCD_WIDTH; dmask1 = dibits[mask&0x0F]; dmask2 = dibits[(mask>>4)&0x0F]; dst_end = dst_row + width; if (dmask1 != 0) { do { data = *src_row++; bfunc(dst_row - LCD_WIDTH, dmask1, dibits[data&0x0F]); bfunc(dst_row++, dmask2, dibits[(data>>4)&0x0F]); } while (dst_row < dst_end); } else { do bfunc(dst_row++, dmask2, dibits[((*src_row++)>>4)&0x0F]); while (dst_row < dst_end); } src += stride; dst += 2*LCD_WIDTH; mask = 0xFFu; } mask &= mask_bottom; dmask1 = dibits[mask&0x0F]; dmask2 = dibits[(mask>>4)&0x0F]; dst_end = dst + width; if (dmask1 != 0) { if (dmask2 != 0) { do { data = *src++; bfunc(dst, dmask1, dibits[data&0x0F]); bfunc((dst++) + LCD_WIDTH, dmask2, dibits[(data>>4)&0x0F]); } while (dst < dst_end); } else { do bfunc(dst++, dmask1, dibits[(*src++)&0x0F]); while (dst < dst_end); } } else { do bfunc((dst++) + LCD_WIDTH, dmask2, dibits[((*src++)>>4)&0x0F]); while (dst < dst_end); } } else { dst_end = dst + width; do { const unsigned char *src_col = src++; unsigned char *dst_col = dst++; unsigned mask_col = mask; unsigned data = 0; for (y = ny; y >= 8; y -= 8) { data |= *src_col << shift; if (mask_col & 0xFFu) { if (mask_col & 0x0F) bfunc(dst_col, dibits[mask_col&0x0F], dibits[data&0x0F]); bfunc(dst_col + LCD_WIDTH, dibits[(mask_col>>4)&0x0F], dibits[(data>>4)&0x0F]); mask_col = 0xFFu; } else mask_col >>= 8; src_col += stride; dst_col += 2*LCD_WIDTH; data >>= 8; } data |= *src_col << shift; mask_bottom &= mask_col; if (mask_bottom & 0x0F) bfunc(dst_col, dibits[mask_bottom&0x0F], dibits[data&0x0F]); if (mask_bottom & 0xF0) bfunc(dst_col + LCD_WIDTH, dibits[(mask_bottom&0xF0)>>4], dibits[(data>>4)&0x0F]); } while (dst < dst_end); } } /* Draw a full monochrome bitmap */ void lcd_mono_bitmap(const unsigned char *src, int x, int y, int width, int height) { lcd_mono_bitmap_part(src, 0, 0, width, x, y, width, height); } /* About Rockbox' internal native bitmap format: * * A bitmap contains two bits for every pixel. 00 = white, 01 = light grey, * 10 = dark grey, 11 = black. Bits within a byte are arranged vertically, LSB * at top. * The bytes are stored in row-major order, with byte 0 being top left, * byte 1 2nd from left etc. The first row of bytes defines pixel rows * 0..3, the second row defines pixel row 4..7 etc. * * This is the same as the internal lcd hw format. */ /* Draw a partial native bitmap */ void lcd_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) ICODE_ATTR; void lcd_bitmap_part(const unsigned char *src, int src_x, int src_y, int stride, int x, int y, int width, int height) { int shift, ny; unsigned char *dst, *dst_end; unsigned mask, mask_bottom; lcd_blockfunc_type *bfunc; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_WIDTH) || (y >= LCD_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; /* clipping */ if (x < 0) { width += x; src_x -= x; x = 0; } if (y < 0) { height += y; src_y -= y; y = 0; } if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; src += stride * (src_y >> 2) + src_x; /* move starting point */ src_y &= 3; y -= src_y; dst = &lcd_framebuffer[y>>2][x]; shift = y & 3; ny = height - 1 + shift + src_y; bfunc = lcd_blockfuncs[drawmode]; mask = 0xFFu << (2 * (shift + src_y)); mask_bottom = 0xFFu >> (2 * (~ny & 3)); if (shift == 0) { for (; ny >= 4; ny -= 4) { if (mask == 0xFFu) memcpy(dst, src, width); else { const unsigned char *src_row = src; unsigned char *dst_row = dst; dst_end = dst_row + width; do bfunc(dst_row++, mask, *src_row++); while (dst_row < dst_end); } src += stride; dst += LCD_WIDTH; mask = 0xFFu; } mask &= mask_bottom; if (mask == 0xFFu) memcpy(dst, src, width); else { dst_end = dst + width; do bfunc(dst++, mask, *src++); while (dst < dst_end); } } else { shift *= 2; dst_end = dst + width; do { const unsigned char *src_col = src++; unsigned char *dst_col = dst++; unsigned mask_col = mask; unsigned data = 0; for (y = ny; y >= 4; y -= 4) { data |= *src_col << shift; if (mask_col & 0xFFu) { bfunc(dst_col, mask_col, data); mask_col = 0xFFu; } else mask_col >>= 8; src_col += stride; dst_col += LCD_WIDTH; data >>= 8; } data |= *src_col << shift; bfunc(dst_col, mask_col & mask_bottom, data); } while (dst < dst_end); } } /* Draw a full native bitmap */ void lcd_bitmap(const unsigned char *src, int x, int y, int width, int height) { lcd_bitmap_part(src, 0, 0, width, x, y, width, height); } /* put a string at a given pixel position, skipping first ofs pixel columns */ static void lcd_putsxyofs(int x, int y, int ofs, const unsigned char *str) { int ch; struct font* pf = font_get(curfont); if (bidi_support_enabled) str = bidi_l2v(str, 1); while ((ch = *str++) != '\0' && x < LCD_WIDTH) { int width; const unsigned char *bits; /* check input range */ if (ch < pf->firstchar || ch >= pf->firstchar+pf->size) ch = pf->defaultchar; ch -= pf->firstchar; /* get proportional width and glyph bits */ width = pf->width ? pf->width[ch] : pf->maxwidth; if (ofs > width) { ofs -= width; continue; } bits = pf->bits + (pf->offset ? pf->offset[ch] : ((pf->height + 7) / 8 * pf->maxwidth * ch)); lcd_mono_bitmap_part(bits, ofs, 0, width, x, y, width - ofs, pf->height); x += width - ofs; ofs = 0; } } /* put a string at a given pixel position */ void lcd_putsxy(int x, int y, const unsigned char *str) { lcd_putsxyofs(x, y, 0, str); } /*** line oriented text output ***/ void lcd_puts_style(int x, int y, const unsigned char *str, int style) { int xpos,ypos,w,h; int lastmode = drawmode; /* make sure scrolling is turned off on the line we are updating */ scrolling_lines &= ~(1 << y); if(!str || !str[0]) return; lcd_getstringsize(str, &w, &h); xpos = xmargin + x*w / strlen(str); ypos = ymargin + y*h; lcd_putsxy(xpos, ypos, str); drawmode = (DRMODE_SOLID|DRMODE_INVERSEVID); lcd_fillrect(xpos + w, ypos, LCD_WIDTH - (xpos + w), h); if (style & STYLE_INVERT) { drawmode = DRMODE_COMPLEMENT; lcd_fillrect(xpos, ypos, LCD_WIDTH - xpos, h); } drawmode = lastmode; } /* put a string at a given char position */ void lcd_puts(int x, int y, const unsigned char *str) { lcd_puts_style(x, y, str, STYLE_DEFAULT); } /*** scrolling ***/ /* Reverse the invert setting of the scrolling line (if any) at given char position. Setting will go into affect next time line scrolls. */ void lcd_invertscroll(int x, int y) { struct scrollinfo* s; (void)x; s = &scroll[y]; s->invert = !s->invert; } void lcd_stop_scroll(void) { scrolling_lines=0; } void lcd_scroll_speed(int speed) { scroll_ticks = scroll_tick_table[speed]; } void lcd_scroll_step(int step) { scroll_step = step; } void lcd_scroll_delay(int ms) { scroll_delay = ms / (HZ / 10); } void lcd_bidir_scroll(int percent) { bidir_limit = percent; } void lcd_puts_scroll(int x, int y, const unsigned char *string) { lcd_puts_scroll_style(x, y, string, STYLE_DEFAULT); } void lcd_puts_scroll_style(int x, int y, const unsigned char *string, int style) { struct scrollinfo* s; int w, h; s = &scroll[y]; s->start_tick = current_tick + scroll_delay; s->invert = false; if (style & STYLE_INVERT) { s->invert = true; lcd_puts_style(x,y,string,STYLE_INVERT); } else lcd_puts(x,y,string); lcd_getstringsize(string, &w, &h); if (LCD_WIDTH - x * 8 - xmargin < w) { /* prepare scroll line */ char *end; memset(s->line, 0, sizeof s->line); strcpy(s->line, string); /* get width */ s->width = lcd_getstringsize(s->line, &w, &h); /* scroll bidirectional or forward only depending on the string width */ if ( bidir_limit ) { s->bidir = s->width < (LCD_WIDTH - xmargin) * (100 + bidir_limit) / 100; } else s->bidir = false; if (!s->bidir) { /* add spaces if scrolling in the round */ strcat(s->line, " "); /* get new width incl. spaces */ s->width = lcd_getstringsize(s->line, &w, &h); } end = strchr(s->line, '\0'); strncpy(end, string, LCD_WIDTH/2); s->len = strlen(string); s->offset = 0; s->startx = x; s->backward = false; scrolling_lines |= (1<start_tick)) continue; if (s->backward) s->offset -= scroll_step; else s->offset += scroll_step; pf = font_get(curfont); xpos = xmargin + s->startx * s->width / s->len; ypos = ymargin + index * pf->height; if (s->bidir) { /* scroll bidirectional */ if (s->offset <= 0) { /* at beginning of line */ s->offset = 0; s->backward = false; s->start_tick = current_tick + scroll_delay * 2; } if (s->offset >= s->width - (LCD_WIDTH - xpos)) { /* at end of line */ s->offset = s->width - (LCD_WIDTH - xpos); s->backward = true; s->start_tick = current_tick + scroll_delay * 2; } } else { /* scroll forward the whole time */ if (s->offset >= s->width) s->offset %= s->width; } lastmode = drawmode; drawmode = (DRMODE_SOLID|DRMODE_INVERSEVID); lcd_fillrect(xpos, ypos, LCD_WIDTH - xpos, pf->height); drawmode = DRMODE_SOLID; lcd_putsxyofs(xpos, ypos, s->offset, s->line); if (s->invert) { drawmode = DRMODE_COMPLEMENT; lcd_fillrect(xpos, ypos, LCD_WIDTH - xpos, pf->height); } drawmode = lastmode; lcd_update_rect(xpos, ypos, LCD_WIDTH - xpos, pf->height); } sleep(scroll_ticks); } }