/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Björn Stenberg * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include "config.h" #include "kernel.h" #include "thread.h" #include "cpu.h" #include "system.h" #include "panic.h" #if !defined(CPU_PP) || !defined(BOOTLOADER) volatile long current_tick NOCACHEDATA_ATTR = 0; #endif void (*tick_funcs[MAX_NUM_TICK_TASKS])(void); /* This array holds all queues that are initiated. It is used for broadcast. */ static struct event_queue *all_queues[32] NOCACHEBSS_ATTR; static int num_queues NOCACHEBSS_ATTR; void queue_wait(struct event_queue *q, struct event *ev) ICODE_ATTR; /**************************************************************************** * Standard kernel stuff ****************************************************************************/ void kernel_init(void) { /* Init the threading API */ init_threads(); if(CURRENT_CORE == CPU) { memset(tick_funcs, 0, sizeof(tick_funcs)); num_queues = 0; memset(all_queues, 0, sizeof(all_queues)); } tick_start(1000/HZ); } void sleep(int ticks) { #if CONFIG_CPU == S3C2440 && defined(BOOTLOADER) volatile int counter; TCON &= ~(1 << 20); // stop timer 4 // TODO: this constant depends on dividers settings inherited from // firmware. Set them explicitly somwhere. TCNTB4 = 12193 * ticks / HZ; TCON |= 1 << 21; // set manual bit TCON &= ~(1 << 21); // reset manual bit TCON &= ~(1 << 22); //autoreload Off TCON |= (1 << 20); // start timer 4 do { counter = TCNTO4; } while(counter > 0); #elif defined(CPU_PP) && defined(BOOTLOADER) unsigned stop = USEC_TIMER + ticks * (1000000/HZ); while (TIME_BEFORE(USEC_TIMER, stop)) switch_thread(true,NULL); #else sleep_thread(ticks); #endif } void yield(void) { #if ((CONFIG_CPU == S3C2440 || defined(ELIO_TPJ1022)) && defined(BOOTLOADER)) /* Some targets don't like yielding in the bootloader */ #else switch_thread(true, NULL); #endif } /**************************************************************************** * Queue handling stuff ****************************************************************************/ #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME /* Moves waiting thread's descriptor to the current sender when a message is dequeued */ static void queue_fetch_sender(struct queue_sender_list *send, unsigned int i) { struct thread_entry **spp = &send->senders[i]; if (*spp) { send->curr_sender = *spp; *spp = NULL; } } /* Puts the specified return value in the waiting thread's return value * and wakes the thread. * 1) A sender should be confirmed to exist before calling which makes it * more efficent to reject the majority of cases that don't need this called. * 2) Requires interrupts disabled since queue overflows can cause posts * from interrupt handlers to wake threads. Not doing so could cause * an attempt at multiple wakes or other problems. */ static void queue_release_sender(struct thread_entry **sender, intptr_t retval) { (*sender)->retval = retval; wakeup_thread_irq_safe(sender); #if 0 /* This should _never_ happen - there must never be multiple threads in this list and it is a corrupt state */ if (*sender != NULL) panicf("Queue: send slot ovf"); #endif } /* Releases any waiting threads that are queued with queue_send - * reply with 0. * Disable IRQs before calling since it uses queue_release_sender. */ static void queue_release_all_senders(struct event_queue *q) { if(q->send) { unsigned int i; for(i = q->read; i != q->write; i++) { struct thread_entry **spp = &q->send->senders[i & QUEUE_LENGTH_MASK]; if(*spp) { queue_release_sender(spp, 0); } } } } /* Enables queue_send on the specified queue - caller allocates the extra data structure */ void queue_enable_queue_send(struct event_queue *q, struct queue_sender_list *send) { q->send = send; memset(send, 0, sizeof(struct queue_sender_list)); } #endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */ void queue_init(struct event_queue *q, bool register_queue) { q->read = 0; q->write = 0; q->thread = NULL; #if NUM_CORES > 1 q->irq_safe = false; #endif #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME q->send = NULL; /* No message sending by default */ #endif if(register_queue) { /* Add it to the all_queues array */ all_queues[num_queues++] = q; } } #if NUM_CORES > 1 /** * If IRQ mode is enabled, some core-wise locking mechanisms are disabled * causing accessing queue to be no longer thread safe from the other core. * However, that locking mechanism would also kill IRQ handlers. * * @param q struct of an event_queue * @param state enable/disable IRQ mode * @default state disabled */ void queue_set_irq_safe(struct event_queue *q, bool state) { q->irq_safe = state; } #endif void queue_delete(struct event_queue *q) { int i; bool found = false; int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); lock_cores(); /* Release theads waiting on queue */ wakeup_thread(&q->thread); #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME /* Release waiting threads and reply to any dequeued message waiting for one. */ queue_release_all_senders(q); queue_reply(q, 0); #endif /* Find the queue to be deleted */ for(i = 0;i < num_queues;i++) { if(all_queues[i] == q) { found = true; break; } } if(found) { /* Move the following queues up in the list */ for(;i < num_queues-1;i++) { all_queues[i] = all_queues[i+1]; } num_queues--; } unlock_cores(); set_irq_level(oldlevel); } void queue_wait(struct event_queue *q, struct event *ev) { int oldlevel; unsigned int rd; oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); lock_cores(); if (q->read == q->write) { set_irq_level_and_block_thread(&q->thread, oldlevel); oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); lock_cores(); } rd = q->read++ & QUEUE_LENGTH_MASK; *ev = q->events[rd]; #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME if(q->send && q->send->senders[rd]) { /* Get data for a waiting thread if one */ queue_fetch_sender(q->send, rd); } #endif unlock_cores(); set_irq_level(oldlevel); } void queue_wait_w_tmo(struct event_queue *q, struct event *ev, int ticks) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); lock_cores(); if (q->read == q->write && ticks > 0) { set_irq_level_and_block_thread_w_tmo(&q->thread, ticks, oldlevel); oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); lock_cores(); } if (q->read != q->write) { unsigned int rd = q->read++ & QUEUE_LENGTH_MASK; *ev = q->events[rd]; #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME if(q->send && q->send->senders[rd]) { /* Get data for a waiting thread if one */ queue_fetch_sender(q->send, rd); } #endif } else { ev->id = SYS_TIMEOUT; } unlock_cores(); set_irq_level(oldlevel); } void queue_post(struct event_queue *q, long id, intptr_t data) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); unsigned int wr; #if NUM_CORES > 1 if (!q->irq_safe) lock_cores(); #endif wr = q->write++ & QUEUE_LENGTH_MASK; q->events[wr].id = id; q->events[wr].data = data; #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME if(q->send) { struct thread_entry **spp = &q->send->senders[wr]; if (*spp) { /* overflow protect - unblock any thread waiting at this index */ queue_release_sender(spp, 0); } } #endif wakeup_thread_irq_safe(&q->thread); #if NUM_CORES > 1 if (!q->irq_safe) unlock_cores(); #endif set_irq_level(oldlevel); } #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME /* No wakeup_thread_irq_safe here because IRQ handlers are not allowed use of this function - we only aim to protect the queue integrity by turning them off. */ intptr_t queue_send(struct event_queue *q, long id, intptr_t data) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); unsigned int wr; lock_cores(); wr = q->write++ & QUEUE_LENGTH_MASK; q->events[wr].id = id; q->events[wr].data = data; if(q->send) { struct thread_entry **spp = &q->send->senders[wr]; if (*spp) { /* overflow protect - unblock any thread waiting at this index */ queue_release_sender(spp, 0); } wakeup_thread(&q->thread); set_irq_level_and_block_thread(spp, oldlevel); return thread_get_current()->retval; } /* Function as queue_post if sending is not enabled */ wakeup_thread(&q->thread); unlock_cores(); set_irq_level(oldlevel); return 0; } #if 0 /* not used now but probably will be later */ /* Query if the last message dequeued was added by queue_send or not */ bool queue_in_queue_send(struct event_queue *q) { return q->send && q->send->curr_sender; } #endif /* Replies with retval to any dequeued message sent with queue_send */ void queue_reply(struct event_queue *q, intptr_t retval) { lock_cores(); /* No IRQ lock here since IRQs cannot change this */ if(q->send && q->send->curr_sender) { queue_release_sender(&q->send->curr_sender, retval); } unlock_cores(); } #endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */ bool queue_empty(const struct event_queue* q) { bool is_empty; #if NUM_CORES > 1 if (!q->irq_safe) lock_cores(); #endif is_empty = ( q->read == q->write ); #if NUM_CORES > 1 if (!q->irq_safe) unlock_cores(); #endif return is_empty; } void queue_clear(struct event_queue* q) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); #if NUM_CORES > 1 if (!q->irq_safe) lock_cores(); #endif #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME /* Release all thread waiting in the queue for a reply - dequeued sent message will be handled by owning thread */ queue_release_all_senders(q); #endif q->read = 0; q->write = 0; #if NUM_CORES > 1 if (!q->irq_safe) unlock_cores(); #endif set_irq_level(oldlevel); } void queue_remove_from_head(struct event_queue *q, long id) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); #if NUM_CORES > 1 if (!q->irq_safe) lock_cores(); #endif while(q->read != q->write) { unsigned int rd = q->read & QUEUE_LENGTH_MASK; if(q->events[rd].id != id) { break; } #ifdef HAVE_EXTENDED_MESSAGING_AND_NAME if(q->send) { struct thread_entry **spp = &q->send->senders[rd]; if (*spp) { /* Release any thread waiting on this message */ queue_release_sender(spp, 0); } } #endif q->read++; } #if NUM_CORES > 1 if (!q->irq_safe) unlock_cores(); #endif set_irq_level(oldlevel); } /** * The number of events waiting in the queue. * * @param struct of event_queue * @return number of events in the queue */ int queue_count(const struct event_queue *q) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); int result; #if NUM_CORES > 1 if (!q->irq_safe) lock_cores(); #endif result = q->write - q->read; #if NUM_CORES > 1 if (!q->irq_safe) unlock_cores(); #endif set_irq_level(oldlevel); return result; } int queue_broadcast(long id, intptr_t data) { int i; for(i = 0;i < num_queues;i++) { queue_post(all_queues[i], id, data); } return num_queues; } /**************************************************************************** * Timer tick ****************************************************************************/ #if CONFIG_CPU == SH7034 void tick_start(unsigned int interval_in_ms) { unsigned long count; count = CPU_FREQ * interval_in_ms / 1000 / 8; if(count > 0x10000) { panicf("Error! The tick interval is too long (%d ms)\n", interval_in_ms); return; } /* We are using timer 0 */ TSTR &= ~0x01; /* Stop the timer */ TSNC &= ~0x01; /* No synchronization */ TMDR &= ~0x01; /* Operate normally */ TCNT0 = 0; /* Start counting at 0 */ GRA0 = (unsigned short)(count - 1); TCR0 = 0x23; /* Clear at GRA match, sysclock/8 */ /* Enable interrupt on level 1 */ IPRC = (IPRC & ~0x00f0) | 0x0010; TSR0 &= ~0x01; TIER0 = 0xf9; /* Enable GRA match interrupt */ TSTR |= 0x01; /* Start timer 1 */ } void IMIA0(void) __attribute__ ((interrupt_handler)); void IMIA0(void) { int i; /* Run through the list of tick tasks */ for(i = 0;i < MAX_NUM_TICK_TASKS;i++) { if(tick_funcs[i]) { tick_funcs[i](); } } current_tick++; TSR0 &= ~0x01; } #elif defined(CPU_COLDFIRE) void tick_start(unsigned int interval_in_ms) { unsigned long count; int prescale; count = CPU_FREQ/2 * interval_in_ms / 1000 / 16; if(count > 0x10000) { panicf("Error! The tick interval is too long (%d ms)\n", interval_in_ms); return; } prescale = cpu_frequency / CPU_FREQ; /* Note: The prescaler is later adjusted on-the-fly on CPU frequency changes within timer.c */ /* We are using timer 0 */ TRR0 = (unsigned short)(count - 1); /* The reference count */ TCN0 = 0; /* reset the timer */ TMR0 = 0x001d | ((unsigned short)(prescale - 1) << 8); /* restart, CLK/16, enabled, prescaler */ TER0 = 0xff; /* Clear all events */ ICR1 = 0x8c; /* Interrupt on level 3.0 */ IMR &= ~0x200; } void TIMER0(void) __attribute__ ((interrupt_handler)); void TIMER0(void) { int i; /* Run through the list of tick tasks */ for(i = 0;i < MAX_NUM_TICK_TASKS;i++) { if(tick_funcs[i]) { tick_funcs[i](); } } current_tick++; TER0 = 0xff; /* Clear all events */ } #elif defined(CPU_PP) #ifndef BOOTLOADER void TIMER1(void) { int i; TIMER1_VAL; /* Read value to ack IRQ */ /* Run through the list of tick tasks (using main core) */ if (CURRENT_CORE == CPU) { for (i = 0;i < MAX_NUM_TICK_TASKS;i++) { if (tick_funcs[i]) { tick_funcs[i](); } } current_tick++; } } #endif void tick_start(unsigned int interval_in_ms) { #ifndef BOOTLOADER if(CURRENT_CORE == CPU) { TIMER1_CFG = 0x0; TIMER1_VAL; /* enable timer */ TIMER1_CFG = 0xc0000000 | (interval_in_ms*1000 - 1); /* unmask interrupt source */ CPU_INT_EN = TIMER1_MASK; } else { COP_INT_EN = TIMER1_MASK; } #else /* We don't enable interrupts in the bootloader */ (void)interval_in_ms; #endif } #elif CONFIG_CPU == PNX0101 void timer_handler(void) { int i; /* Run through the list of tick tasks */ for(i = 0;i < MAX_NUM_TICK_TASKS;i++) { if(tick_funcs[i]) tick_funcs[i](); } current_tick++; TIMER0.clr = 0; } void tick_start(unsigned int interval_in_ms) { TIMER0.ctrl &= ~0x80; /* Disable the counter */ TIMER0.ctrl |= 0x40; /* Reload after counting down to zero */ TIMER0.load = 3000000 * interval_in_ms / 1000; TIMER0.ctrl &= ~0xc; /* No prescaler */ TIMER0.clr = 1; /* Clear the interrupt request */ irq_set_int_handler(IRQ_TIMER0, timer_handler); irq_enable_int(IRQ_TIMER0); TIMER0.ctrl |= 0x80; /* Enable the counter */ } #endif int tick_add_task(void (*f)(void)) { int i; int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); /* Add a task if there is room */ for(i = 0;i < MAX_NUM_TICK_TASKS;i++) { if(tick_funcs[i] == NULL) { tick_funcs[i] = f; set_irq_level(oldlevel); return 0; } } set_irq_level(oldlevel); panicf("Error! tick_add_task(): out of tasks"); return -1; } int tick_remove_task(void (*f)(void)) { int i; int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); /* Remove a task if it is there */ for(i = 0;i < MAX_NUM_TICK_TASKS;i++) { if(tick_funcs[i] == f) { tick_funcs[i] = NULL; set_irq_level(oldlevel); return 0; } } set_irq_level(oldlevel); return -1; } /**************************************************************************** * Tick-based interval timers/one-shots - be mindful this is not really * intended for continuous timers but for events that need to run for a short * time and be cancelled without further software intervention. ****************************************************************************/ #ifdef INCLUDE_TIMEOUT_API static struct timeout *tmo_list = NULL; /* list of active timeout events */ /* timeout tick task - calls event handlers when they expire * Event handlers may alter ticks, callback and data during operation. */ static void timeout_tick(void) { unsigned long tick = current_tick; struct timeout *curr, *next; for (curr = tmo_list; curr != NULL; curr = next) { next = (struct timeout *)curr->next; if (TIME_BEFORE(tick, curr->expires)) continue; /* this event has expired - call callback */ if (curr->callback(curr)) *(long *)&curr->expires = tick + curr->ticks; /* reload */ else timeout_cancel(curr); /* cancel */ } } /* Cancels a timeout callback - can be called from the ISR */ void timeout_cancel(struct timeout *tmo) { int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); if (tmo_list != NULL) { struct timeout *curr = tmo_list; struct timeout *prev = NULL; while (curr != tmo && curr != NULL) { prev = curr; curr = (struct timeout *)curr->next; } if (curr != NULL) { /* in list */ if (prev == NULL) tmo_list = (struct timeout *)curr->next; else *(const struct timeout **)&prev->next = curr->next; if (tmo_list == NULL) tick_remove_task(timeout_tick); /* last one - remove task */ } /* not in list or tmo == NULL */ } set_irq_level(oldlevel); } /* Adds a timeout callback - calling with an active timeout resets the interval - can be called from the ISR */ void timeout_register(struct timeout *tmo, timeout_cb_type callback, int ticks, intptr_t data) { int oldlevel; struct timeout *curr; if (tmo == NULL) return; oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL); /* see if this one is already registered */ curr = tmo_list; while (curr != tmo && curr != NULL) curr = (struct timeout *)curr->next; if (curr == NULL) { /* not found - add it */ if (tmo_list == NULL) tick_add_task(timeout_tick); /* first one - add task */ *(struct timeout **)&tmo->next = tmo_list; tmo_list = tmo; } tmo->callback = callback; tmo->ticks = ticks; tmo->data = data; *(long *)&tmo->expires = current_tick + ticks; set_irq_level(oldlevel); } #endif /* INCLUDE_TIMEOUT_API */ #ifndef SIMULATOR /* * Simulator versions in uisimulator/SIMVER/ */ /**************************************************************************** * Simple mutex functions ****************************************************************************/ void mutex_init(struct mutex *m) { m->locked = false; m->thread = NULL; } void mutex_lock(struct mutex *m) { if (test_and_set(&m->locked, 1)) { /* Wait until the lock is open... */ block_thread(&m->thread); } } void mutex_unlock(struct mutex *m) { lock_cores(); if (m->thread == NULL) m->locked = 0; else wakeup_thread(&m->thread); unlock_cores(); } void spinlock_lock(struct mutex *m) { while (test_and_set(&m->locked, 1)) { /* wait until the lock is open... */ switch_thread(true, NULL); } } void spinlock_unlock(struct mutex *m) { m->locked = 0; } #endif /* ndef SIMULATOR */