/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * Copyright © 2008-2009 Rafaël Carré * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */ #include "config.h" /* for HAVE_MULTIDRIVE & AMS_OF_SIZE */ #include "fs_defines.h" #include "led.h" #include "sdmmc.h" #include "system.h" #include "cpu.h" #include #include #include #include "gcc_extensions.h" #include "as3525.h" #include "pl180.h" /* SD controller */ #include "pl081.h" /* DMA controller */ #include "dma-target.h" /* DMA request lines */ #include "clock-target.h" #include "panic.h" #include "storage.h" #ifdef HAVE_BUTTON_LIGHT #include "backlight-target.h" #endif /*#define LOGF_ENABLE*/ #include "logf.h" //#define VERIFY_WRITE 1 /* command flags */ #define MCI_NO_RESP (0<<0) #define MCI_RESP (1<<0) #define MCI_LONG_RESP (1<<1) #define MCI_ACMD (1<<2) #define MCI_NOCRC (1<<3) /* ARM PL180 registers */ #define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00)) #define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04)) #define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08)) #define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C)) #define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10)) #define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14)) #define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18)) #define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C)) #define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20)) #define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24)) #define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28)) #define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C)) #define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30)) #define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34)) #define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38)) #define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C)) #define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40)) #define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44)) #define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48)) #define MCI_DATA_ERROR \ ( MCI_DATA_CRC_FAIL \ | MCI_DATA_TIMEOUT \ | MCI_TX_UNDERRUN \ | MCI_RX_OVERRUN \ | MCI_START_BIT_ERR) #define MCI_RESPONSE_ERROR \ ( MCI_CMD_TIMEOUT \ | MCI_CMD_CRC_FAIL) #define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80)) #define IDE_INTERFACE_CLK (1<<6) /* non AHB interface */ /* volumes */ #define INTERNAL_AS3525 0 /* embedded SD card */ #define SD_SLOT_AS3525 1 /* SD slot if present */ static const int pl180_base[NUM_DRIVES] = { NAND_FLASH_BASE #ifdef HAVE_MULTIDRIVE , SD_MCI_BASE #endif }; static int sd_wait_for_tran_state(const int drive); static int sd_select_bank(signed char bank); static int sd_init_card(const int drive); static void init_pl180_controller(const int drive); #define BLOCKS_PER_BANK 0x7a7800u static tCardInfo card_info[NUM_DRIVES]; /* maximum timeouts recommended in the SD Specification v2.00 */ /* MCI_DATA_TIMER register data timeout in card bus clock periods */ #define SD_MAX_READ_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 100) /* 100 ms */ #define SD_MAX_WRITE_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 250) /* 250 ms */ #ifdef CONFIG_STORAGE_MULTI static int sd_first_drive = 0; #else #define sd_first_drive 0 #endif /* for compatibility */ static long last_disk_activity = -1; #define MIN_YIELD_PERIOD 5 /* ticks */ static long next_yield = 0; static struct mutex sd_mtx; #if defined(HAVE_MULTIDRIVE) static bool hs_card = false; #define EXT_SD_BITS (1<<2) #endif static struct semaphore transfer_completion_signal; static volatile unsigned int transfer_error[NUM_DRIVES]; #define PL180_MAX_TRANSFER_ERRORS 10 #define UNALIGNED_NUM_SECTORS 10 static unsigned char aligned_buffer[UNALIGNED_NUM_SECTORS* SD_BLOCK_SIZE] __attribute__((aligned(32))); /* align on cache line size */ static unsigned char *uncached_buffer = AS3525_UNCACHED_ADDR(&aligned_buffer[0]); static inline void mci_delay(void) { udelay(1000) ; } static inline bool card_detect_target(void) { #if defined(HAVE_MULTIDRIVE) return !(GPIOA_PIN(2)); #else return false; #endif } #if defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP) static void enable_controller_mci(bool on) { #if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE) extern int buttonlight_is_on; #endif #if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) static bool cpu_boosted = false; #endif static bool sd_enabled = true; /* force action on first call in sd_init() */ if (sd_enabled == on) return; /* nothing to do */ sd_enabled = on; if(on) { #if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE) /* buttonlight AMSes need a bit of special handling for the buttonlight * here due to the dual mapping of GPIOD and XPD */ bitmod32(&CCU_IO, 1<<2, 3<<2); /* XPD is SD-MCI interface (b3:2 = 01) */ if (buttonlight_is_on) GPIOD_DIR &= ~(1<<7); else buttonlight_hw_off(); #endif #if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) if(card_detect_target()) /* If SD card present Boost cpu for voltage */ { cpu_boosted = true; cpu_boost(true); } #endif /* defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) */ } else { #if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) if(cpu_boosted) { cpu_boost(false); cpu_boosted = false; } #endif /* defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) */ #if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE) bitmod32(&CCU_IO, 0<<2, 3<<2); /* XPD is general purpose IO (b3:2 = 00) */ if (buttonlight_is_on) buttonlight_hw_on(); #endif } } #endif /* defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP) */ /* AMS v1 have two different drive interfaces MCI_SD(XPD) and GGU_IDE */ static void enable_controller(bool on, const int drive) { if (drive == INTERNAL_AS3525) { #ifndef BOOTLOADER if (on) { bitset32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE); CGU_IDE |= IDE_INTERFACE_CLK; /* interface enable */ } else { CGU_IDE &= ~(IDE_INTERFACE_CLK); /* interface disable */ bitclr32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE); } #else (void) on; #endif /* ndef BOOTLOADER */ } #if defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP) else enable_controller_mci(on); #endif } #ifdef HAVE_HOTSWAP static int sd1_oneshot_callback(struct timeout *tmo) { /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ queue_broadcast(card_detect_target() ? SYS_HOTSWAP_INSERTED : SYS_HOTSWAP_EXTRACTED, sd_first_drive + SD_SLOT_AS3525); return 0; (void)tmo; } void sd_gpioa_isr(void) { static struct timeout sd1_oneshot; if (GPIOA_MIS & EXT_SD_BITS) { timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0); GPIOA_IC = EXT_SD_BITS; /* acknowledge interrupt */ } } #endif /* HAVE_HOTSWAP */ void INT_NAND(void) { const int status = MCI_STATUS(INTERNAL_AS3525); transfer_error[INTERNAL_AS3525] = status & MCI_DATA_ERROR; semaphore_release(&transfer_completion_signal); MCI_CLEAR(INTERNAL_AS3525) = status; } #ifdef HAVE_MULTIDRIVE void INT_MCI0(void) { const int status = MCI_STATUS(SD_SLOT_AS3525); transfer_error[SD_SLOT_AS3525] = status & MCI_DATA_ERROR; semaphore_release(&transfer_completion_signal); MCI_CLEAR(SD_SLOT_AS3525) = status; } #endif static bool send_cmd(const int drive, const int cmd, const int arg, const int flags, long *response) { int status; unsigned cmd_retries = 6; while(cmd_retries--) { if ((flags & MCI_ACMD) && /* send SD_APP_CMD before each try */ !send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_RESP, response)) return false; /* Clear old status flags */ MCI_CLEAR(drive) = 0x7ff; /* Load command argument or clear if none */ MCI_ARGUMENT(drive) = arg; /* Construct MCI_COMMAND & enable CPSM */ MCI_COMMAND(drive) = /*b0:5*/ cmd /* b6 */| ((flags & (MCI_RESP|MCI_LONG_RESP)) ? MCI_COMMAND_RESPONSE : 0) /* b7 */| ((flags & MCI_LONG_RESP) ? MCI_COMMAND_LONG_RESPONSE : 0) /* b8 | MCI_COMMAND_INTERRUPT */ /* b9 | MCI_COMMAND_PENDING */ /*Only used with stream data transfer*/ /* b10*/| MCI_COMMAND_ENABLE; /* Enables CPSM */ /* Wait while cmd completes then disable CPSM */ while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); MCI_COMMAND(drive) = 0; status = MCI_STATUS(drive); /* Handle command responses */ if(flags & MCI_RESP) /* CMD expects response */ { response[0] = MCI_RESP0(drive); /* Always prepare short response */ if(status & MCI_RESPONSE_ERROR) {/* timeout or crc failure */ if ((status & MCI_CMD_CRC_FAIL) && (flags & MCI_NOCRC)) break; logf("sd cmd error: drive %d cmd %d arg %08x sd_status %08x resp0 %08lx", drive, cmd, arg, status, response[0]); continue; } if((flags & MCI_RESP) && !(flags & MCI_LONG_RESP) && (response[0] & SD_R1_CARD_ERROR)) { logf("sd card error: drive %d cmd %d arg %08x r1 %08lx", drive, cmd, arg, response[0]); } if(status & MCI_CMD_RESP_END) /* Response passed CRC check */ { if(flags & MCI_LONG_RESP) { /* response[0] has already been read */ response[1] = MCI_RESP1(drive); response[2] = MCI_RESP2(drive); response[3] = MCI_RESP3(drive); } return true; } } else if(status & MCI_CMD_SENT) /* CMD sent, no response required */ return true; } return false; } /* MCI_CLOCK = MCLK / 2x(ClkDiv[bits 7:0]+1) */ #define MCI_FULLSPEED (MCI_CLOCK_ENABLE | MCI_CLOCK_BYPASS) /* MCLK */ #define MCI_HALFSPEED (MCI_CLOCK_ENABLE) /* MCLK/2 */ #define MCI_QUARTERSPEED (MCI_CLOCK_ENABLE | 1) /* MCLK/4 */ #define MCI_IDENTSPEED (MCI_CLOCK_ENABLE | AS3525_SD_IDENT_DIV) /* IDENT */ static int sd_init_card(const int drive) { unsigned long response; long init_timeout; bool sd_v2 = false; card_info[drive].rca = 0; /* MCLCK on and set to 400kHz ident frequency */ MCI_CLOCK(drive) = MCI_IDENTSPEED; /* 100 - 400kHz clock required for Identification Mode */ /* Start of Card Identification Mode ************************************/ /* CMD0 Go Idle -- all card functions switch back to default */ if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL)) return -1; mci_delay(); /* CMD8 Check for v2 sd card. Must be sent before using ACMD41 Non v2 cards will not respond to this command*/ if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &response)) if((response & 0xFFF) == 0x1AA) sd_v2 = true; /* timeout for initialization is 1sec, from SD Specification 2.00 */ init_timeout = current_tick + HZ; do { /* this timeout is the only valid error for this loop*/ if(TIME_AFTER(current_tick, init_timeout)) return -2; /* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */ send_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)), MCI_ACMD|MCI_NOCRC|MCI_RESP, &card_info[drive].ocr); } while(!(card_info[drive].ocr & (1<<31))); /* CMD2 send CID */ if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, card_info[drive].cid)) return -3; /* CMD3 send RCA */ if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info[drive].rca)) return -4; /* End of Card Identification Mode ************************************/ #ifdef HAVE_MULTIDRIVE /* The internal SDs are v1 */ /* Try to switch V2 cards to HS timings, non HS seem to ignore this */ if(sd_v2) { /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response)) return -5; if(sd_wait_for_tran_state(drive)) return -6; /* CMD6 0xf indicates no influence, [3:0],0x1 - HS Access*/ if(!send_cmd(drive, SD_SWITCH_FUNC, 0x80fffff1, MCI_NO_RESP, NULL)) return -7; sleep(HZ/10);/* need to wait at least 8 clock periods */ /* go back to STBY state so we can read csd */ /* CMD7 w/rca=0: Deselect card to put it in STBY state */ if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL)) return -8; mci_delay(); } #endif /* HAVE_MULTIDRIVE */ /* CMD9 send CSD */ if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca, MCI_RESP|MCI_LONG_RESP, card_info[drive].csd)) return -9; sd_parse_csd(&card_info[drive]); #if defined(HAVE_MULTIDRIVE) hs_card = (card_info[drive].speed == 50000000); #endif /* Boost MCICLK to operating speed */ if(drive == INTERNAL_AS3525) MCI_CLOCK(drive) = MCI_HALFSPEED; /* MCICLK = IDE_CLK/2 = 25 MHz */ #if defined(HAVE_MULTIDRIVE) else /* MCICLK = PCLK/2 = 31MHz(HS) or PCLK/4 = 15.5 Mhz (STD)*/ MCI_CLOCK(drive) = (hs_card ? MCI_HALFSPEED : MCI_QUARTERSPEED) | MCI_CLOCK_POWERSAVE; /* SD supports powersave */ #endif /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response)) return -10; #if 0 /* FIXME : it seems that reading fails on some models */ /* Switch to to 4 bit widebus mode */ if(sd_wait_for_tran_state(drive) < 0) return -11; /* ACMD42 */ if(!send_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_ACMD|MCI_RESP, &response)) return -15; /* ACMD6 */ if(!send_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_ACMD|MCI_RESP, &response)) return -13; /* Now that card is widebus make controller aware */ MCI_CLOCK(drive) |= MCI_CLOCK_WIDEBUS; #endif /* * enable bank switching * without issuing this command, we only have access to 1/4 of the blocks * of the first bank (0x1E9E00 blocks, which is the size reported in the * CSD register) */ if(drive == INTERNAL_AS3525) { const int ret = sd_select_bank(-1); if(ret < 0) return ret -16; /* CMD7 w/rca = 0: Unselect card to put it in STBY state */ if(!send_cmd(drive, SD_SELECT_CARD, 0, MCI_NO_RESP, NULL)) return -17; mci_delay(); /* CMD9 send CSD again, so we got the correct number of blocks */ if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca, MCI_RESP|MCI_LONG_RESP, card_info[drive].csd)) return -18; sd_parse_csd(&card_info[drive]); /* The OF is stored in the first blocks */ card_info[INTERNAL_AS3525].numblocks -= AMS_OF_SIZE; /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response)) return -19; } card_info[drive].initialized = 1; return 0; } static void init_pl180_controller(const int drive) { MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0; MCI_CLEAR(drive) = 0x7ff; MCI_MASK0(drive) = MCI_DATA_ERROR | MCI_DATA_END; MCI_MASK1(drive) = 0; #ifdef HAVE_MULTIDRIVE VIC_INT_ENABLE = (drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0; /* clear previous irq */ GPIOA_IC = EXT_SD_BITS; /* enable edge detecting */ GPIOA_IS &= ~EXT_SD_BITS; /* detect both raising and falling edges */ GPIOA_IBE |= EXT_SD_BITS; /* enable the card detect interrupt */ GPIOA_IE |= EXT_SD_BITS; #else VIC_INT_ENABLE = INTERRUPT_NAND; #endif MCI_POWER(drive) = MCI_POWER_UP | (MCI_VDD_3_0); /* OF Setting */ mci_delay(); MCI_POWER(drive) |= MCI_POWER_ON; mci_delay(); MCI_SELECT(drive) = 0; /* Pl180 clocks get turned on at start of card init */ } int sd_init(void) { int ret; CGU_IDE = IDE_INTERFACE_CLK /* enable interface */ | (AS3525_IDE_DIV << 2) | AS3525_CLK_PLLA; /* clock source = PLLA */ bitset32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE); #ifdef HAVE_MULTIDRIVE bitset32(&CGU_PERI, CGU_MCI_CLOCK_ENABLE); bitmod32(&CCU_IO, 1<<2, 3<<2); /* bits 3:2 = 01, xpd is SD interface */ #endif semaphore_init(&transfer_completion_signal, 1, 0); init_pl180_controller(INTERNAL_AS3525); ret = sd_init_card(INTERNAL_AS3525); if(ret < 0) return ret; #ifdef HAVE_MULTIDRIVE init_pl180_controller(SD_SLOT_AS3525); #endif /* init mutex */ mutex_init(&sd_mtx); for (int i = 0; i < NUM_DRIVES ; i++) enable_controller(false, i); return 0; } #ifdef HAVE_HOTSWAP bool sd_removable(IF_MD_NONVOID(int drive)) { return (drive == SD_SLOT_AS3525); } bool sd_present(IF_MD_NONVOID(int drive)) { return (drive == INTERNAL_AS3525) ? true : card_detect_target(); } #endif /* HAVE_HOTSWAP */ static int sd_wait_for_tran_state(const int drive) { unsigned long response = 0; unsigned int timeout = current_tick + 5 * HZ; while (1) { if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MCI_RESP, &response)) return -1; if (((response >> 9) & 0xf) == SD_TRAN) return 0; if(TIME_AFTER(current_tick, timeout)) return -2; if (TIME_AFTER(current_tick, next_yield)) { yield(); next_yield = current_tick + MIN_YIELD_PERIOD; } } } static int sd_select_bank(signed char bank) { int ret; unsigned loops = 0; memset(uncached_buffer, 0, 512); if(bank == -1) { /* enable bank switching */ uncached_buffer[0] = 16; uncached_buffer[1] = 1; uncached_buffer[2] = 10; } else uncached_buffer[0] = bank; do { if(loops++ > PL180_MAX_TRANSFER_ERRORS) panicf("SD bank %d error : 0x%x", bank, transfer_error[INTERNAL_AS3525]); ret = sd_wait_for_tran_state(INTERNAL_AS3525); if (ret < 0) return ret - 2; if(!send_cmd(INTERNAL_AS3525, SD_SWITCH_FUNC, 0x80ffffef, MCI_NO_RESP, NULL)) return -1; mci_delay(); if(!send_cmd(INTERNAL_AS3525, 35, 0, MCI_NO_RESP, NULL)) return -2; mci_delay(); dma_retain(); /* we don't use the uncached buffer here, because we need the * physical memory address for DMA transfers */ dma_enable_channel(1, AS3525_PHYSICAL_ADDR(&aligned_buffer[0]), MCI_FIFO(INTERNAL_AS3525), DMA_PERI_SD, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL); MCI_DATA_TIMER(INTERNAL_AS3525) = SD_MAX_WRITE_TIMEOUT; MCI_DATA_LENGTH(INTERNAL_AS3525) = 512; MCI_DATA_CTRL(INTERNAL_AS3525) = (1<<0) /* enable */ | (0<<1) /* transfer direction */ | (1<<3) /* DMA */ | (9<<4) /* 2^9 = 512 */ ; /* Wakeup signal from NAND/MCIO isr on MCI_DATA_ERROR | MCI_DATA_END */ semaphore_wait(&transfer_completion_signal, TIMEOUT_BLOCK); /* Wait for FIFO to empty, card may still be in PRG state */ while(MCI_STATUS(INTERNAL_AS3525) & MCI_TX_ACTIVE ); dma_release(); } while(transfer_error[INTERNAL_AS3525]); card_info[INTERNAL_AS3525].current_bank = (bank == -1) ? 0 : bank; return 0; } static int sd_transfer_sectors(IF_MD(int drive,) unsigned long start, int count, void* buf, const bool write) { #ifndef HAVE_MULTIDRIVE const int drive = 0; #endif int ret = 0; unsigned loops = 0; unsigned long response; bool aligned = !((uintptr_t)buf & (CACHEALIGN_SIZE - 1)); enable_controller(true, drive); led(true); if (card_info[drive].initialized <= 0) { ret = sd_init_card(drive); if (!(card_info[drive].initialized)) goto sd_transfer_error_nodma; } if(count < 0) /* XXX: why is it signed ? */ { ret = -20; goto sd_transfer_error_nodma; } if((start+count) > card_info[drive].numblocks) { ret = -21; goto sd_transfer_error_nodma; } /* skip SanDisk OF */ if (drive == INTERNAL_AS3525) start += AMS_OF_SIZE; last_disk_activity = current_tick; dma_retain(); if(aligned) { /* direct transfer, indirect is always uncached */ if(write) commit_dcache_range(buf, count * SECTOR_SIZE); else discard_dcache_range(buf, count * SECTOR_SIZE); } const int cmd = write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK; while(count > 0) { /* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH * register, so we have to transfer maximum 127 sectors at a time. */ unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */ void *dma_buf; unsigned long bank_start = start; /* Only switch banks for internal storage */ if(drive == INTERNAL_AS3525) { unsigned int bank = 0; while(bank_start >= BLOCKS_PER_BANK) { bank_start -= BLOCKS_PER_BANK; bank++; } /* Switch bank if needed */ if(card_info[INTERNAL_AS3525].current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) { ret -= 20; goto sd_transfer_error; } } /* Do not cross a bank boundary in a single transfer loop */ if((transfer + bank_start) > BLOCKS_PER_BANK) transfer = BLOCKS_PER_BANK - bank_start; } /* Set bank_start to the correct unit (blocks or bytes) */ if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */ bank_start *= SD_BLOCK_SIZE; if(aligned) { dma_buf = AS3525_PHYSICAL_ADDR(buf); } else { dma_buf = AS3525_PHYSICAL_ADDR(&aligned_buffer[0]); if(transfer > UNALIGNED_NUM_SECTORS) transfer = UNALIGNED_NUM_SECTORS; if(write) memcpy(uncached_buffer, buf, transfer * SD_BLOCK_SIZE); } ret = sd_wait_for_tran_state(drive); if (ret < 0) { ret -= 2*20; goto sd_transfer_error; } if(!send_cmd(drive, cmd, bank_start, MCI_RESP, &response)) { ret -= 3*20; goto sd_transfer_error; } if(write) { dma_enable_channel(1, dma_buf, MCI_FIFO(drive), (drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL); /*Small delay for writes prevents data crc failures at lower freqs*/ #ifdef HAVE_MULTIDRIVE if((drive == SD_SLOT_AS3525) && !hs_card) udelay(4); #endif } else dma_enable_channel(1, MCI_FIFO(drive), dma_buf, (drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT, DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL); MCI_DATA_TIMER(drive) = write ? SD_MAX_WRITE_TIMEOUT : SD_MAX_READ_TIMEOUT; MCI_DATA_LENGTH(drive) = transfer * SD_BLOCK_SIZE; MCI_DATA_CTRL(drive) = (1<<0) /* enable */ | (!write<<1) /* transfer direction */ | (1<<3) /* DMA */ | (9<<4) /* 2^9 = 512 */ ; /* Wakeup signal from NAND/MCIO isr on MCI_DATA_ERROR | MCI_DATA_END */ semaphore_wait(&transfer_completion_signal, TIMEOUT_BLOCK); /* Wait for FIFO to empty, card may still be in PRG state for writes */ while(MCI_STATUS(drive) & MCI_TX_ACTIVE); /* * If the write aborted early due to a tx underrun, disable the * dma channel here, otherwise there are still 4 words in the fifo * and the retried write will get corrupted. */ dma_disable_channel(1); last_disk_activity = current_tick; if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP, &response)) { ret = -4*20; goto sd_transfer_error; } if(!transfer_error[drive]) { if(!write && !aligned) memcpy(buf, uncached_buffer, transfer * SD_BLOCK_SIZE); buf += transfer * SD_BLOCK_SIZE; start += transfer; count -= transfer; loops = 0; /* reset errors counter */ } else if(loops++ > PL180_MAX_TRANSFER_ERRORS) panicf("SD Xfer %s err:0x%x Disk%d", (write? "write": "read"), transfer_error[drive], drive); } sd_transfer_error: dma_release(); sd_transfer_error_nodma: led(false); enable_controller(false, drive); if (ret) /* error */ card_info[drive].initialized = 0; return ret; } int sd_read_sectors(IF_MD(int drive,) unsigned long start, int count, void* buf) { int ret; mutex_lock(&sd_mtx); ret = sd_transfer_sectors(IF_MD(drive,) start, count, buf, false); mutex_unlock(&sd_mtx); return ret; } int sd_write_sectors(IF_MD(int drive,) unsigned long start, int count, const void* buf) { #ifdef VERIFY_WRITE unsigned long saved_start = start; int saved_count = count; void *saved_buf = (void*)buf; #endif int ret; mutex_lock(&sd_mtx); ret = sd_transfer_sectors(IF_MD(drive,) start, count, (void*)buf, true); #ifdef VERIFY_WRITE if (ret) { /* write failed, no point in verifying */ mutex_unlock(&sd_mtx); return ret; } count = saved_count; buf = saved_buf; start = saved_start; while (count) { int transfer = count; if(transfer > UNALIGNED_NUM_SECTORS) transfer = UNALIGNED_NUM_SECTORS; sd_transfer_sectors(IF_MD(drive,) start, transfer, aligned_buffer, false); if (memcmp(buf, aligned_buffer, transfer * 512) != 0) { /* try the write again in the hope to repair the damage */ sd_transfer_sectors(IF_MD(drive,) saved_start, saved_count, saved_buf, true); panicf("sd: verify failed: sec=%ld n=%d!", start, transfer); } buf += transfer * 512; count -= transfer; start += transfer; } #endif mutex_unlock(&sd_mtx); return ret; } long sd_last_disk_activity(void) { return last_disk_activity; } tCardInfo *card_get_info_target(int card_no) { return &card_info[card_no]; } #ifdef CONFIG_STORAGE_MULTI int sd_num_drives(int first_drive) { sd_first_drive = first_drive; return NUM_DRIVES; } #endif /* CONFIG_STORAGE_MULTI */ void ams_sd_get_debug_info(struct ams_sd_debug_info *info) { #define MCI_NAND *((volatile unsigned long *)(NAND_FLASH_BASE + 0x04)) #define MCI_SD *((volatile unsigned long *)(SD_MCI_BASE + 0x04)) mutex_lock(&sd_mtx); for (int i = 0; i < NUM_DRIVES ; i++) enable_controller(true, i); /* must be on to read regs */ info->mci_nand = MCI_NAND; #ifdef HAVE_MULTIDRIVE info->mci_sd = MCI_SD; #endif for (int i = 0; i < NUM_DRIVES ; i++) enable_controller(false, i); mutex_unlock(&sd_mtx); } int sd_event(long id, intptr_t data) { int rc = 0; switch (id) { #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: mutex_lock(&sd_mtx); /* lock-out card activity */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[data].initialized = 0; if (id == SYS_HOTSWAP_INSERTED) { enable_controller(true, data); init_pl180_controller(data); rc = sd_init_card(data); enable_controller(false, data); } mutex_unlock(&sd_mtx); break; #endif /* HAVE_HOTSWAP */ case Q_STORAGE_TICK: /* never let a timer wrap confuse us */ next_yield = current_tick; default: rc = storage_event_default_handler(id, data, last_disk_activity, STORAGE_SD); break; } return rc; }