/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "system.h" #include "kernel.h" #include "ssp-imx233.h" #include "clkctrl-imx233.h" #include "pinctrl-imx233.h" #include "dma-imx233.h" /* for debug purpose */ #if 0 #define ASSERT_SSP(ssp) if(ssp < 1 || ssp > 2) panicf("ssp=%d in %s", ssp, __func__); #else #define ASSERT_SSP(ssp) (void) ssp; #endif /* Hack to handle both single and multi devices at once */ #define SSP_SETn(reg, n, field) BF_SETn(reg, n, field) #define SSP_CLRn(reg, n, field) BF_CLRn(reg, n, field) #define SSP_RDn(reg, n, field) BF_RDn(reg, n, field) #define SSP_WRn(reg, n, field, val) BF_WRn(reg, n, field, val) #define SSP_WRn_V(reg, n, field, val) BF_WRn_V(reg, n, field, val) #define SSP_REGn(reg, n) HW_##reg(n) /* Used for DMA */ struct ssp_dma_command_t { struct apb_dma_command_t dma; /* PIO words */ uint32_t ctrl0; uint32_t cmd0; uint32_t cmd1; /* padded to next multiple of cache line size (32 bytes) */ uint32_t pad[2]; } __attribute__((packed)) CACHEALIGN_ATTR; __ENSURE_STRUCT_CACHE_FRIENDLY(struct ssp_dma_command_t) static bool ssp_in_use[IMX233_NR_SSP]; static int ssp_nr_in_use = 0; static struct mutex ssp_mutex[IMX233_NR_SSP]; static struct semaphore ssp_sema[IMX233_NR_SSP]; static struct ssp_dma_command_t ssp_dma_cmd[IMX233_NR_SSP]; static uint32_t ssp_bus_width[IMX233_NR_SSP]; static unsigned ssp_log_block_size[IMX233_NR_SSP]; static ssp_detect_cb_t ssp_detect_cb[IMX233_NR_SSP]; static bool ssp_detect_invert[IMX233_NR_SSP]; void INT_SSP(int ssp) { /* reset dma channel on error */ if(imx233_dma_is_channel_error_irq(APB_SSP(ssp))) imx233_dma_reset_channel(APB_SSP(ssp)); /* clear irq flags */ imx233_dma_clear_channel_interrupt(APB_SSP(ssp)); semaphore_release(&ssp_sema[ssp - 1]); } void INT_SSP1_DMA(void) { INT_SSP(1); } void INT_SSP2_DMA(void) { INT_SSP(2); } void INT_SSP1_ERROR(void) { panicf("ssp1 error"); } void INT_SSP2_ERROR(void) { panicf("ssp2 error"); } void imx233_ssp_init(void) { /* power down and init data structures */ ssp_nr_in_use = 0; for(int i = 0; i < IMX233_NR_SSP; i++) { SSP_SETn(SSP_CTRL0, 1 + i, CLKGATE); semaphore_init(&ssp_sema[i], 1, 0); mutex_init(&ssp_mutex[i]); ssp_bus_width[i] = BV_SSP_CTRL0_BUS_WIDTH__ONE_BIT; } } void imx233_ssp_start(int ssp) { ASSERT_SSP(ssp) if(ssp_in_use[ssp - 1]) return; ssp_in_use[ssp - 1] = true; /* Gate block */ imx233_reset_block(&SSP_REGn(SSP_CTRL0, ssp)); /* Gate dma channel */ imx233_dma_clkgate_channel(APB_SSP(ssp), true); /* If first block to start, start SSP clock */ if(ssp_nr_in_use == 0) { /** 2.3.1: the clk_ssp maximum frequency is 102.858 MHz */ /* fracdiv = 18 => clk_io = pll = 480Mhz * intdiv = 5 => clk_ssp = 96Mhz */ imx233_clkctrl_set_fractional_divisor(CLK_IO, 18); imx233_clkctrl_enable_clock(CLK_SSP, false); imx233_clkctrl_set_clock_divisor(CLK_SSP, 5); imx233_clkctrl_set_bypass_pll(CLK_SSP, false); /* use IO */ imx233_clkctrl_enable_clock(CLK_SSP, true); } ssp_nr_in_use++; } void imx233_ssp_stop(int ssp) { ASSERT_SSP(ssp) if(!ssp_in_use[ssp - 1]) return; ssp_in_use[ssp - 1] = false; /* Gate off */ SSP_SETn(SSP_CTRL0, ssp, CLKGATE); /* Gate off dma */ imx233_dma_clkgate_channel(APB_SSP(ssp), false); /* If last block to stop, stop SSP clock */ ssp_nr_in_use--; if(ssp_nr_in_use == 0) { imx233_clkctrl_enable_clock(CLK_SSP, false); imx233_clkctrl_set_fractional_divisor(CLK_IO, 0); } } void imx233_ssp_softreset(int ssp) { ASSERT_SSP(ssp) imx233_reset_block(&HW_SSP_CTRL0(ssp)); } void imx233_ssp_set_timings(int ssp, int divide, int rate, int timeout) { ASSERT_SSP(ssp) SSP_REGn(SSP_TIMING, ssp) = BF_OR3(SSP_TIMING, CLOCK_DIVIDE(divide), CLOCK_RATE(rate), TIMEOUT(timeout)); } void imx233_ssp_setup_ssp1_sd_mmc_pins(bool enable_pullups, unsigned bus_width, unsigned drive_strength, bool use_alt) { /* SSP_{CMD,SCK} */ imx233_set_pin_drive_strength(2, 0, drive_strength); imx233_set_pin_drive_strength(2, 6, drive_strength); imx233_pinctrl_acquire_pin(2, 0, "ssp1 cmd"); imx233_pinctrl_acquire_pin(2, 6, "ssp1 sck"); imx233_set_pin_function(2, 0, PINCTRL_FUNCTION_MAIN); imx233_set_pin_function(2, 6, PINCTRL_FUNCTION_MAIN); imx233_enable_pin_pullup(2, 0, enable_pullups); /* SSP_DATA{0-3} */ for(unsigned i = 0; i < MIN(bus_width, 4); i++) { imx233_pinctrl_acquire_pin(2, 2 + i, "ssp1 data"); imx233_set_pin_drive_strength(2, 2 + i, drive_strength); imx233_set_pin_function(2, 2 + i, PINCTRL_FUNCTION_MAIN); imx233_enable_pin_pullup(2, 2 + i, enable_pullups); } /* SSP_DATA{4-7} */ for(unsigned i = 4; i < bus_width; i++) { if(use_alt) { imx233_pinctrl_acquire_pin(0, 22 + i, "ssp1 data"); imx233_set_pin_drive_strength(0, 22 + i, drive_strength); imx233_set_pin_function(0, 22 + i, PINCTRL_FUNCTION_ALT2); imx233_enable_pin_pullup(0, 22 + i, enable_pullups); } else { imx233_pinctrl_acquire_pin(0, 4 + i, "ssp1 data"); imx233_set_pin_drive_strength(0, 4 + i, drive_strength); imx233_set_pin_function(0, 4 + i, PINCTRL_FUNCTION_ALT2); imx233_enable_pin_pullup(0, 4 + i, enable_pullups); } } } void imx233_ssp_setup_ssp2_sd_mmc_pins(bool enable_pullups, unsigned bus_width, unsigned drive_strength) { /* SSP_{CMD,SCK} */ imx233_pinctrl_acquire_pin(0, 20, "ssp2 cmd"); imx233_pinctrl_acquire_pin(0, 24, "ssp2 sck"); imx233_set_pin_drive_strength(0, 20, drive_strength); imx233_set_pin_drive_strength(0, 24, drive_strength); imx233_set_pin_function(0, 20, PINCTRL_FUNCTION_ALT2); imx233_set_pin_function(0, 24, PINCTRL_FUNCTION_ALT2); imx233_enable_pin_pullup(0, 20, enable_pullups); /* SSP_DATA{0-7}*/ for(unsigned i = 0; i < bus_width; i++) { imx233_pinctrl_acquire_pin(0, i, "ssp2 data"); imx233_set_pin_drive_strength(0, i, drive_strength); imx233_set_pin_function(0, i, PINCTRL_FUNCTION_ALT2); imx233_enable_pin_pullup(0, i, enable_pullups); imx233_enable_gpio_output(0, i, false); imx233_set_gpio_output(0, i, false); } } void imx233_ssp_set_mode(int ssp, unsigned mode) { ASSERT_SSP(ssp) /* set mode */ SSP_WRn(SSP_CTRL1, ssp, SSP_MODE, mode); /* set mode specific settings */ switch(mode) { case BV_SSP_CTRL1_SSP_MODE__SD_MMC: SSP_WRn_V(SSP_CTRL1, ssp, WORD_LENGTH, EIGHT_BITS); SSP_SETn(SSP_CTRL1, ssp, POLARITY); SSP_SETn(SSP_CTRL1, ssp, DMA_ENABLE); break; default: return; } } void imx233_ssp_set_bus_width(int ssp, unsigned width) { ASSERT_SSP(ssp) switch(width) { case 1: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__ONE_BIT; break; case 4: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__FOUR_BIT; break; case 8: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__EIGHT_BIT; break; } } void imx233_ssp_set_block_size(int ssp, unsigned log_block_size) { ASSERT_SSP(ssp) ssp_log_block_size[ssp - 1] = log_block_size; } enum imx233_ssp_error_t imx233_ssp_sd_mmc_transfer(int ssp, uint8_t cmd, uint32_t cmd_arg, enum imx233_ssp_resp_t resp, void *buffer, unsigned block_count, bool wait4irq, bool read, uint32_t *resp_ptr) { ASSERT_SSP(ssp) mutex_lock(&ssp_mutex[ssp - 1]); /* Enable all interrupts */ imx233_icoll_enable_interrupt(INT_SRC_SSP_DMA(ssp), true); imx233_dma_enable_channel_interrupt(APB_SSP(ssp), true); unsigned xfer_size = block_count * (1 << ssp_log_block_size[ssp - 1]); ssp_dma_cmd[ssp - 1].cmd0 = BF_OR4(SSP_CMD0, CMD(cmd), APPEND_8CYC(1), BLOCK_SIZE(ssp_log_block_size[ssp - 1]), BLOCK_COUNT(block_count - 1)); ssp_dma_cmd[ssp - 1].cmd1 = cmd_arg; /* setup all flags and run */ ssp_dma_cmd[ssp - 1].ctrl0 = BF_OR9(SSP_CTRL0, XFER_COUNT(xfer_size), ENABLE(1), IGNORE_CRC(buffer == NULL), WAIT_FOR_IRQ(wait4irq), GET_RESP(resp != SSP_NO_RESP), LONG_RESP(resp == SSP_LONG_RESP), BUS_WIDTH(ssp_bus_width[ssp - 1]), DATA_XFER(buffer != NULL), READ(read)); /* setup the dma parameters */ ssp_dma_cmd[ssp - 1].dma.buffer = buffer; ssp_dma_cmd[ssp - 1].dma.next = NULL; ssp_dma_cmd[ssp - 1].dma.cmd = (buffer == NULL ? HW_APB_CHx_CMD__COMMAND__NO_XFER : read ? HW_APB_CHx_CMD__COMMAND__WRITE : HW_APB_CHx_CMD__COMMAND__READ) | HW_APB_CHx_CMD__IRQONCMPLT | HW_APB_CHx_CMD__SEMAPHORE | HW_APB_CHx_CMD__WAIT4ENDCMD | (3 << HW_APB_CHx_CMD__CMDWORDS_BP) | (xfer_size << HW_APB_CHx_CMD__XFER_COUNT_BP); SSP_CLRn(SSP_CTRL1, ssp, ALL_IRQ); imx233_dma_reset_channel(APB_SSP(ssp)); imx233_dma_start_command(APB_SSP(ssp), &ssp_dma_cmd[ssp - 1].dma); /* the SSP hardware already has a timeout but we never know; 1 sec is a maximum * for all operations */ enum imx233_ssp_error_t ret; if(semaphore_wait(&ssp_sema[ssp - 1], HZ) == OBJ_WAIT_TIMEDOUT) { imx233_dma_reset_channel(APB_SSP(ssp)); ret = SSP_TIMEOUT; } else if((SSP_REGn(SSP_CTRL1, ssp) & BM_SSP_CTRL1_ALL_IRQ) == 0) ret = SSP_SUCCESS; else if((SSP_REGn(SSP_CTRL1, ssp) & BM_SSP_CTRL1_TIMEOUT_IRQ)) ret = SSP_TIMEOUT; else ret = SSP_ERROR; if(resp_ptr != NULL) { if(resp != SSP_NO_RESP) *resp_ptr++ = SSP_REGn(SSP_SDRESP0, ssp); if(resp == SSP_LONG_RESP) { *resp_ptr++ = SSP_REGn(SSP_SDRESP1, ssp); *resp_ptr++ = SSP_REGn(SSP_SDRESP2, ssp); *resp_ptr++ = SSP_REGn(SSP_SDRESP3, ssp); } } mutex_unlock(&ssp_mutex[ssp - 1]); return ret; } void imx233_ssp_sd_mmc_power_up_sequence(int ssp) { ASSERT_SSP(ssp) SSP_CLRn(SSP_CMD0, ssp, SLOW_CLKING_EN); SSP_SETn(SSP_CMD0, ssp, CONT_CLKING_EN); mdelay(1); SSP_CLRn(SSP_CMD0, ssp, CONT_CLKING_EN); } static int ssp_detect_oneshot_callback(int ssp) { ASSERT_SSP(ssp) if(ssp_detect_cb[ssp - 1]) ssp_detect_cb[ssp - 1](ssp); return 0; } static int ssp1_detect_oneshot_callback(struct timeout *tmo) { (void) tmo; return ssp_detect_oneshot_callback(1); } static int ssp2_detect_oneshot_callback(struct timeout *tmo) { (void) tmo; return ssp_detect_oneshot_callback(2); } static void detect_irq(int bank, int pin) { static struct timeout ssp1_detect_oneshot; static struct timeout ssp2_detect_oneshot; if(bank == 2 && pin == 1) timeout_register(&ssp1_detect_oneshot, ssp1_detect_oneshot_callback, (3*HZ/10), 0); else if(bank == 0 && pin == 19) timeout_register(&ssp2_detect_oneshot, ssp2_detect_oneshot_callback, (3*HZ/10), 0); } void imx233_ssp_sdmmc_setup_detect(int ssp, bool enable, ssp_detect_cb_t fn, bool first_time, bool invert) { ASSERT_SSP(ssp) int bank = ssp == 1 ? 2 : 0; int pin = ssp == 1 ? 1 : 19; ssp_detect_cb[ssp - 1] = fn; ssp_detect_invert[ssp - 1] = invert; if(enable) { imx233_pinctrl_acquire_pin(bank, pin, ssp == 1 ? "ssp1 detect" : "ssp2 detect"); imx233_set_pin_function(bank, pin, PINCTRL_FUNCTION_GPIO); imx233_enable_gpio_output(bank, pin, false); } if(first_time && imx233_ssp_sdmmc_detect(ssp)) detect_irq(bank, pin); imx233_setup_pin_irq(bank, pin, enable, true, !imx233_ssp_sdmmc_detect_raw(ssp), detect_irq); } bool imx233_ssp_sdmmc_is_detect_inverted(int ssp) { ASSERT_SSP(ssp) return ssp_detect_invert[ssp - 1]; } bool imx233_ssp_sdmmc_detect_raw(int ssp) { ASSERT_SSP(ssp) return SSP_RDn(SSP_STATUS, ssp, CARD_DETECT); } bool imx233_ssp_sdmmc_detect(int ssp) { ASSERT_SSP(ssp) return imx233_ssp_sdmmc_detect_raw(ssp) != ssp_detect_invert[ssp - 1]; }