/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Jens Arnold * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #define CLOCK_MASK 0x00004000 #define DATA_MASK 0x00002000 #define RS_MASK 0x00008000 #define GPIO_OUT_ADDR 0x80000004 #define CS_MASK 0x00000020 #define GPIO1_OUT_ADDR 0x800000b4 .extern cpu_frequency /* Global variable from system.c */ .section .icode,"ax",@progbits /* Output 8 bits to the LCD. Instruction order is devised to maximize the * delay between changing the data line and the CLK L->H transition, which * makes the LCD controller sample DATA. * * Custom calling convention: * %a0 - GPIO_OUT_ADDR * %d3 - data byte * %d6 - DATA_MASK * %d7 - CLOCK_MASK * Clobbers: * %d0..%d3 */ .write_byte: move.w %sr, %d2 move.w #0x2700, %sr move.l (%a0), %d0 /* Get current state of data port */ move.l %d0, %d1 and.l %d6, %d1 /* Check current state of data line */ beq.s 1f /* and set it as previous-state bit */ bset #8, %d3 1: move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */ lsr.l #1, %d1 /* with 1's where the data changes from the */ eor.l %d1, %d3 /* previous state, and 0's where it doesn't */ swap %d3 /* Shift data to upper byte */ lsl.l #8, %d3 eor.l %d7, %d0 /* precalculate opposite state of clock line */ lsl.l #1,%d3 /* Shift out MSB */ bcc.s 1f eor.l %d6, %d0 /* 1: Flip data bit */ 1: move.l %d0, %d1 move.l %d0, (%a0) /* Output new state and set CLK = 0*/ eor.l %d7, %d1 bra.w .wr_bit7 /* Output 16 bits to the LCD. Instruction order is devised to maximize the * delay between changing the data line and the CLK L->H transition, which * makes the LCD controller sample DATA. * * Custom calling convention: * %a0 - GPIO_OUT_ADDR * %d3 - data word * %d6 - DATA_MASK * %d7 - CLOCK_MASK * Clobbers: * %d0..%d3 */ .write_word: move.w %sr, %d2 move.w #0x2700, %sr move.l (%a0), %d0 /* Get current state of data port */ move.l %d0, %d1 and.l %d6, %d1 /* Check current state of data line */ beq.s 1f /* and set it as previous-state bit */ bset #16, %d3 1: move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */ lsr.l #1, %d1 /* with 1's where the data changes from the */ eor.l %d1, %d3 /* previous state, and 0's where it doesn't */ swap %d3 /* Shift data to upper word */ eor.l %d7, %d0 /* precalculate opposite state of clock line */ lsl.l #1,%d3 /* Shift out MSB */ bcc.s 1f eor.l %d6, %d0 /* 1: Flip data bit */ 1: move.l %d0, %d1 move.l %d0, (%a0) /* Output new state and set CLK = 0*/ eor.l %d7, %d1 nop .macro bit_out lsl.l #1,%d3 bcc.s 1f eor.l %d6, %d0 1: move.l %d1, (%a0) /* Set CLK = 1 (delayed) */ move.l %d0, %d1 move.l %d0, (%a0) eor.l %d7, %d1 .endm bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop .wr_bit7: bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop bit_out nop nop move.l %d1, (%a0) /* Set CLK = 1 (delayed) */ move.w %d2, %sr rts /* Output 16 bits to the LCD as fast as possible. Use only at < 60MHz. * * Custom calling convention: * %a0 - GPIO_OUT_ADDR * %d3 - data word * %d6 - DATA_MASK * %d7 - CLOCK_MASK * Clobbers: * %d0..%d3 */ .write_word_fast: move.w %sr, %d2 /* Get current interrupt level */ move.w #0x2700, %sr /* Disable interrupts */ move.l (%a0), %d0 /* Get current state of data port */ move.l %d0, %d1 and.l %d6, %d1 /* Check current state of data line */ beq.s 1f /* and set it as previous-state bit */ bset #16, %d3 1: move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */ lsr.l #1, %d1 /* with 1's where the data changes from the */ eor.l %d1, %d3 /* previous state, and 0's where it doesn't */ swap %d3 /* Shift data to upper byte */ move.l %d0, %d1 /* precalculate opposite state of clock line */ eor.l %d7, %d1 .macro bit_out_fast lsl.l #1,%d3 /* Shift out MSB */ bcc.s 1f eor.l %d6, %d0 /* 1: Flip data bit */ eor.l %d6, %d1 /* for both clock states */ 1: move.l %d1, (%a0) /* Output new state and set CLK = 0*/ move.l %d0, (%a0) /* set CLK = 1 */ .endm bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast bit_out_fast move.w %d2, %sr /* Restore interrupt level */ rts .global lcd_remote_write_command .type lcd_remote_write_command, @function lcd_remote_write_command: lea.l (-4*4, %sp), %sp movem.l %d2-%d3/%d6-%d7, (%sp) move.l (4*4+4, %sp), %d3 /* cmd */ lea.l GPIO_OUT_ADDR, %a0 lea.l GPIO1_OUT_ADDR, %a1 move.l #DATA_MASK, %d6 move.l #CLOCK_MASK, %d7 move.l #~RS_MASK, %d0 and.l %d0, (%a0) move.l #~CS_MASK, %d0 and.l %d0, (%a1) bsr.w .write_byte move.l #CS_MASK, %d0 or.l %d0, (%a1) movem.l (%sp), %d2-%d3/%d6-%d7 lea.l (4*4, %sp), %sp rts .global lcd_remote_write_command_ex .type lcd_remote_write_command_ex, @function lcd_remote_write_command_ex: lea.l (-4*4, %sp), %sp movem.l %d2-%d3/%d6-%d7, (%sp) movem.l (4*4+4, %sp), %d2-%d3 /* cmd, data */ lea.l GPIO_OUT_ADDR, %a0 lea.l GPIO1_OUT_ADDR, %a1 move.l #DATA_MASK, %d6 move.l #CLOCK_MASK, %d7 move.l #~RS_MASK, %d0 and.l %d0, (%a0) move.l #~CS_MASK, %d0 and.l %d0, (%a1) lsl.l #8, %d2 or.l %d2, %d3 bsr.w .write_word move.l #CS_MASK, %d0 or.l %d0, (%a1) movem.l (%sp), %d2-%d3/%d6-%d7 lea.l (4*4, %sp), %sp rts .global lcd_remote_write_data .type lcd_remote_write_data, @function lcd_remote_write_data: lea.l (-7*4, %sp), %sp movem.l %d2-%d4/%d6-%d7/%a2-%a3, (%sp) move.l (7*4+4, %sp), %a2 /* p_words */ move.l (7*4+8, %sp), %d4 /* count */ lea.l GPIO_OUT_ADDR, %a0 lea.l GPIO1_OUT_ADDR, %a1 move.l #DATA_MASK, %d6 move.l #CLOCK_MASK, %d7 lea.l .write_word, %a3 move.l cpu_frequency, %d0 cmp.l #60000000, %d0 bhi.b 1f lea.l .write_word_fast, %a3 1: move.l #RS_MASK, %d0 or.l %d0, (%a0) move.l #~CS_MASK, %d0 and.l %d0, (%a1) .wd_loop: clr.l %d3 move.w (%a2)+, %d3 jsr (%a3) subq.l #1, %d4 bne.s .wd_loop move.l #CS_MASK, %d0 or.l %d0, (%a1) movem.l (%sp), %d2-%d4/%d6-%d7/%a2-%a3 lea.l (7*4, %sp), %sp rts