/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Copyright (c) 2008 Gregory Maxwell Written by Jean-Marc Valin and Gregory Maxwell */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "celt.h" #include "modes.h" #include "rate.h" #include "os_support.h" #include "stack_alloc.h" #include "quant_bands.h" static const opus_int16 eband5ms[] = { /*0 200 400 600 800 1k 1.2 1.4 1.6 2k 2.4 2.8 3.2 4k 4.8 5.6 6.8 8k 9.6 12k 15.6 */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100 }; /* Alternate tuning (partially derived from Vorbis) */ #define BITALLOC_SIZE 11 /* Bit allocation table in units of 1/32 bit/sample (0.1875 dB SNR) */ static const unsigned char band_allocation[] = { /*0 200 400 600 800 1k 1.2 1.4 1.6 2k 2.4 2.8 3.2 4k 4.8 5.6 6.8 8k 9.6 12k 15.6 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 80, 75, 69, 63, 56, 49, 40, 34, 29, 20, 18, 10, 0, 0, 0, 0, 0, 0, 0, 0, 110,100, 90, 84, 78, 71, 65, 58, 51, 45, 39, 32, 26, 20, 12, 0, 0, 0, 0, 0, 0, 118,110,103, 93, 86, 80, 75, 70, 65, 59, 53, 47, 40, 31, 23, 15, 4, 0, 0, 0, 0, 126,119,112,104, 95, 89, 83, 78, 72, 66, 60, 54, 47, 39, 32, 25, 17, 12, 1, 0, 0, 134,127,120,114,103, 97, 91, 85, 78, 72, 66, 60, 54, 47, 41, 35, 29, 23, 16, 10, 1, 144,137,130,124,113,107,101, 95, 88, 82, 76, 70, 64, 57, 51, 45, 39, 33, 26, 15, 1, 152,145,138,132,123,117,111,105, 98, 92, 86, 80, 74, 67, 61, 55, 49, 43, 36, 20, 1, 162,155,148,142,133,127,121,115,108,102, 96, 90, 84, 77, 71, 65, 59, 53, 46, 30, 1, 172,165,158,152,143,137,131,125,118,112,106,100, 94, 87, 81, 75, 69, 63, 56, 45, 20, 200,200,200,200,200,200,200,200,198,193,188,183,178,173,168,163,158,153,148,129,104, }; #ifndef CUSTOM_MODES_ONLY #ifdef FIXED_POINT #include "static_modes_fixed.h" #else #include "static_modes_float.h" #endif #endif /* CUSTOM_MODES_ONLY */ #ifndef M_PI #define M_PI 3.141592653 #endif #ifdef CUSTOM_MODES /* Defining 25 critical bands for the full 0-20 kHz audio bandwidth Taken from http://ccrma.stanford.edu/~jos/bbt/Bark_Frequency_Scale.html */ #define BARK_BANDS 25 static const opus_int16 bark_freq[BARK_BANDS+1] = { 0, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500, 20000}; static opus_int16 *compute_ebands(opus_int32 Fs, int frame_size, int res, int *nbEBands) { opus_int16 *eBands; int i, j, lin, low, high, nBark, offset=0; /* All modes that have 2.5 ms short blocks use the same definition */ if (Fs == 400*(opus_int32)frame_size) { *nbEBands = sizeof(eband5ms)/sizeof(eband5ms[0])-1; eBands = opus_alloc(sizeof(opus_int16)*(*nbEBands+1)); for (i=0;i<*nbEBands+1;i++) eBands[i] = eband5ms[i]; return eBands; } /* Find the number of critical bands supported by our sampling rate */ for (nBark=1;nBark= Fs) break; /* Find where the linear part ends (i.e. where the spacing is more than min_width */ for (lin=0;lin= res) break; low = (bark_freq[lin]+res/2)/res; high = nBark-lin; *nbEBands = low+high; eBands = opus_alloc(sizeof(opus_int16)*(*nbEBands+2)); if (eBands==NULL) return NULL; /* Linear spacing (min_width) */ for (i=0;i0) offset = eBands[low-1]*res - bark_freq[lin-1]; /* Spacing follows critical bands */ for (i=0;i frame_size) eBands[*nbEBands] = frame_size; for (i=1;i<*nbEBands-1;i++) { if (eBands[i+1]-eBands[i] < eBands[i]-eBands[i-1]) { eBands[i] -= (2*eBands[i]-eBands[i-1]-eBands[i+1])/2; } } /* Remove any empty bands. */ for (i=j=0;i<*nbEBands;i++) if(eBands[i+1]>eBands[j]) eBands[++j]=eBands[i+1]; *nbEBands=j; for (i=1;i<*nbEBands;i++) { /* Every band must be smaller than the last band. */ celt_assert(eBands[i]-eBands[i-1]<=eBands[*nbEBands]-eBands[*nbEBands-1]); /* Each band must be no larger than twice the size of the previous one. */ celt_assert(eBands[i+1]-eBands[i]<=2*(eBands[i]-eBands[i-1])); } return eBands; } static void compute_allocation_table(CELTMode *mode) { int i, j; unsigned char *allocVectors; int maxBands = sizeof(eband5ms)/sizeof(eband5ms[0])-1; mode->nbAllocVectors = BITALLOC_SIZE; allocVectors = opus_alloc(sizeof(unsigned char)*(BITALLOC_SIZE*mode->nbEBands)); if (allocVectors==NULL) return; /* Check for standard mode */ if (mode->Fs == 400*(opus_int32)mode->shortMdctSize) { for (i=0;inbEBands;i++) allocVectors[i] = band_allocation[i]; mode->allocVectors = allocVectors; return; } /* If not the standard mode, interpolate */ /* Compute per-codec-band allocation from per-critical-band matrix */ for (i=0;inbEBands;j++) { int k; for (k=0;k mode->eBands[j]*(opus_int32)mode->Fs/mode->shortMdctSize) break; } if (k>maxBands-1) allocVectors[i*mode->nbEBands+j] = band_allocation[i*maxBands + maxBands-1]; else { opus_int32 a0, a1; a1 = mode->eBands[j]*(opus_int32)mode->Fs/mode->shortMdctSize - 400*(opus_int32)eband5ms[k-1]; a0 = 400*(opus_int32)eband5ms[k] - mode->eBands[j]*(opus_int32)mode->Fs/mode->shortMdctSize; allocVectors[i*mode->nbEBands+j] = (a0*band_allocation[i*maxBands+k-1] + a1*band_allocation[i*maxBands+k])/(a0+a1); } } } /*printf ("\n"); for (i=0;inbEBands;j++) printf ("%d ", allocVectors[i*mode->nbEBands+j]); printf ("\n"); } exit(0);*/ mode->allocVectors = allocVectors; } #endif /* CUSTOM_MODES */ CELTMode *opus_custom_mode_create(opus_int32 Fs, int frame_size, int *error) { int i; #ifdef CUSTOM_MODES CELTMode *mode=NULL; int res; opus_val16 *window; opus_int16 *logN; int LM; ALLOC_STACK; #if !defined(VAR_ARRAYS) && !defined(USE_ALLOCA) if (global_stack==NULL) goto failure; #endif #endif #ifndef CUSTOM_MODES_ONLY for (i=0;iFs && (frame_size<shortMdctSize*static_mode_list[i]->nbShortMdcts) { if (error) *error = OPUS_OK; return (CELTMode*)static_mode_list[i]; } } } #endif /* CUSTOM_MODES_ONLY */ #ifndef CUSTOM_MODES if (error) *error = OPUS_BAD_ARG; return NULL; #else /* The good thing here is that permutation of the arguments will automatically be invalid */ if (Fs < 8000 || Fs > 96000) { if (error) *error = OPUS_BAD_ARG; return NULL; } if (frame_size < 40 || frame_size > 1024 || frame_size%2!=0) { if (error) *error = OPUS_BAD_ARG; return NULL; } /* Frames of less than 1ms are not supported. */ if ((opus_int32)frame_size*1000 < Fs) { if (error) *error = OPUS_BAD_ARG; return NULL; } if ((opus_int32)frame_size*75 >= Fs && (frame_size%16)==0) { LM = 3; } else if ((opus_int32)frame_size*150 >= Fs && (frame_size%8)==0) { LM = 2; } else if ((opus_int32)frame_size*300 >= Fs && (frame_size%4)==0) { LM = 1; } else { LM = 0; } /* Shorts longer than 3.3ms are not supported. */ if ((opus_int32)(frame_size>>LM)*300 > Fs) { if (error) *error = OPUS_BAD_ARG; return NULL; } mode = opus_alloc(sizeof(CELTMode)); if (mode==NULL) goto failure; mode->Fs = Fs; /* Pre/de-emphasis depends on sampling rate. The "standard" pre-emphasis is defined as A(z) = 1 - 0.85*z^-1 at 48 kHz. Other rates should approximate that. */ if(Fs < 12000) /* 8 kHz */ { mode->preemph[0] = QCONST16(0.3500061035f, 15); mode->preemph[1] = -QCONST16(0.1799926758f, 15); mode->preemph[2] = QCONST16(0.2719968125f, SIG_SHIFT); /* exact 1/preemph[3] */ mode->preemph[3] = QCONST16(3.6765136719f, 13); } else if(Fs < 24000) /* 16 kHz */ { mode->preemph[0] = QCONST16(0.6000061035f, 15); mode->preemph[1] = -QCONST16(0.1799926758f, 15); mode->preemph[2] = QCONST16(0.4424998650f, SIG_SHIFT); /* exact 1/preemph[3] */ mode->preemph[3] = QCONST16(2.2598876953f, 13); } else if(Fs < 40000) /* 32 kHz */ { mode->preemph[0] = QCONST16(0.7799987793f, 15); mode->preemph[1] = -QCONST16(0.1000061035f, 15); mode->preemph[2] = QCONST16(0.7499771125f, SIG_SHIFT); /* exact 1/preemph[3] */ mode->preemph[3] = QCONST16(1.3333740234f, 13); } else /* 48 kHz */ { mode->preemph[0] = QCONST16(0.8500061035f, 15); mode->preemph[1] = QCONST16(0.0f, 15); mode->preemph[2] = QCONST16(1.f, SIG_SHIFT); mode->preemph[3] = QCONST16(1.f, 13); } mode->maxLM = LM; mode->nbShortMdcts = 1<shortMdctSize = frame_size/mode->nbShortMdcts; res = (mode->Fs+mode->shortMdctSize)/(2*mode->shortMdctSize); mode->eBands = compute_ebands(Fs, mode->shortMdctSize, res, &mode->nbEBands); if (mode->eBands==NULL) goto failure; #if !defined(SMALL_FOOTPRINT) /* Make sure we don't allocate a band larger than our PVQ table. 208 should be enough, but let's be paranoid. */ if ((mode->eBands[mode->nbEBands] - mode->eBands[mode->nbEBands-1])< 208) { goto failure; } #endif mode->effEBands = mode->nbEBands; while (mode->eBands[mode->effEBands] > mode->shortMdctSize) mode->effEBands--; /* Overlap must be divisible by 4 */ mode->overlap = ((mode->shortMdctSize>>2)<<2); compute_allocation_table(mode); if (mode->allocVectors==NULL) goto failure; window = (opus_val16*)opus_alloc(mode->overlap*sizeof(opus_val16)); if (window==NULL) goto failure; #ifndef FIXED_POINT for (i=0;ioverlap;i++) window[i] = Q15ONE*sin(.5*M_PI* sin(.5*M_PI*(i+.5)/mode->overlap) * sin(.5*M_PI*(i+.5)/mode->overlap)); #else for (i=0;ioverlap;i++) window[i] = MIN32(32767,floor(.5+32768.*sin(.5*M_PI* sin(.5*M_PI*(i+.5)/mode->overlap) * sin(.5*M_PI*(i+.5)/mode->overlap)))); #endif mode->window = window; logN = (opus_int16*)opus_alloc(mode->nbEBands*sizeof(opus_int16)); if (logN==NULL) goto failure; for (i=0;inbEBands;i++) logN[i] = log2_frac(mode->eBands[i+1]-mode->eBands[i], BITRES); mode->logN = logN; compute_pulse_cache(mode, mode->maxLM); if (clt_mdct_init(&mode->mdct, 2*mode->shortMdctSize*mode->nbShortMdcts, mode->maxLM) == 0) goto failure; if (error) *error = OPUS_OK; return mode; failure: if (error) *error = OPUS_ALLOC_FAIL; if (mode!=NULL) opus_custom_mode_destroy(mode); return NULL; #endif /* !CUSTOM_MODES */ } #ifdef CUSTOM_MODES void opus_custom_mode_destroy(CELTMode *mode) { if (mode == NULL) return; #ifndef CUSTOM_MODES_ONLY { int i; for (i=0;ieBands); opus_free((opus_int16*)mode->allocVectors); opus_free((opus_val16*)mode->window); opus_free((opus_int16*)mode->logN); opus_free((opus_int16*)mode->cache.index); opus_free((unsigned char*)mode->cache.bits); opus_free((unsigned char*)mode->cache.caps); clt_mdct_clear(&mode->mdct); opus_free((CELTMode *)mode); } #endif