/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include #include #include #include "mkimxboot.h" #include "sb.h" #include "dualboot.h" #include "md5.h" #include "elf.h" /* abstract structure to represent a Rockbox firmware. It can be a scrambled file * or an ELF file or whatever. */ struct rb_fw_t { int nr_insts; struct sb_inst_t *insts; int entry_idx; }; /* A firmware upgrade can contains several variants like recovery image, or * images for different models */ struct imx_fw_variant_desc_t { /* Offset within file */ size_t offset; /* Total size of the firmware */ size_t size; }; /* Map a MD5 sum of the whole file to a model and describe the variants in it */ struct imx_md5sum_t { /* Device model */ enum imx_model_t model; /* md5sum of the file */ char *md5sum; /* Version string */ const char *version; /* Variant descriptions */ struct imx_fw_variant_desc_t fw_variants[VARIANT_COUNT]; }; /* Describe how to produce a bootloader image for a specific model */ struct imx_model_desc_t { /* Descriptive name of this model */ const char *model_name; /* Dualboot code for this model */ const unsigned char *dualboot; /* Size of dualboot functions for this model */ int dualboot_size; /* Model name used in the Rockbox header in ".sansa" files - these match the -add parameter to the "scramble" tool */ const char *rb_model_name; /* Model number used to initialise the checksum in the Rockbox header in ".sansa" files - these are the same as MODEL_NUMBER in config-target.h */ const int rb_model_num; /* Array of NULL-terminated keys */ struct crypto_key_t **keys; /* Dualboot load address */ uint32_t dualboot_addr; /* Bootloader load address */ uint32_t bootloader_addr; }; /* Friendly names for variants */ static const char *imx_fw_variant[] = { [VARIANT_DEFAULT] = "default", [VARIANT_ZENXFI2_RECOVERY] = "ZEN X-Fi2 Recovery", [VARIANT_ZENXFI2_NAND] = "ZEN X-Fi2 NAND", [VARIANT_ZENXFI2_SD] = "ZEN X-Fi2 eMMC/SD", [VARIANT_ZENXFISTYLE_RECOVERY] = "ZEN X-Fi Style Recovery", [VARIANT_ZENSTYLE_RECOVERY] = "ZEN Style 100/300 Recovery", }; /* List of known MD5 sums for firmware upgrades */ static const struct imx_md5sum_t imx_sums[] = { /** Fuze+ */ { /* Version 2.38.6 */ MODEL_FUZEPLUS, "c3e27620a877dc6b200b97dcb3e0ecc7", "2.38.6", { [VARIANT_DEFAULT] = { 0, 34652624 } } }, /** Zen X-Fi2 */ { /* Version 1.23.01 */ MODEL_ZENXFI2, "e37e2c24abdff8e624d0a29f79157850", "1.23.01", { [VARIANT_ZENXFI2_RECOVERY] = { 602128, 684192}, [VARIANT_ZENXFI2_NAND] = { 1286320, 42406608 }, [VARIANT_ZENXFI2_SD] = { 43692928, 42304208 } } }, { /* Version 1.23.01e */ MODEL_ZENXFI2, "2beff2168212d332f13cfc36ca46989d", "1.23.01e", { [VARIANT_ZENXFI2_RECOVERY] = { 0x93010, 684192}, [VARIANT_ZENXFI2_NAND] = { 0x13a0b0, 42410704 }, [VARIANT_ZENXFI2_SD] = { 0x29ac380, 42304208 } } }, /** Zen X-Fi3 */ { /* Version 1.00.15e */ MODEL_ZENXFI3, "658a24eeef5f7186ca731085d8822a87", "1.00.15e", { [VARIANT_DEFAULT] = {0, 18110576} } }, { /* Version 1.00.22e */ MODEL_ZENXFI3, "a5114cd45ea4554ec221f51a71083862", "1.00.22e", { [VARIANT_DEFAULT] = {0, 18110576} } }, { /* Version 1.00.25 */ MODEL_ZENXFI3, "a41a3a78f86a4ac2879d194c6d528059", "1.00.25", { [VARIANT_DEFAULT] = {0, 18110576 } } }, { /* Version 1.00.25e */ MODEL_ZENXFI3, "c180f57e2b2d62620f87a1d853f349ff", "1.00.25e", { [VARIANT_DEFAULT] = {0, 18110576 } } }, /** Zen X-Fi Style */ { /* Version 1.03.04e */ MODEL_ZENXFISTYLE, "32a731b7f714e9f99a95991003759c98", "1.03.04", { [VARIANT_DEFAULT] = {842960, 29876944}, [VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688}, } }, { /* Version 1.03.04e */ MODEL_ZENXFISTYLE, "2c7ee52d9984d85dd39aa49b3331e66c", "1.03.04e", { [VARIANT_DEFAULT] = {842960, 29876944}, [VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688}, } }, { /* Version 1.03.04e */ MODEL_ZENSTYLE, "dbebec8fe666412061d9740ff68605dd", "1.03.04e", { [VARIANT_DEFAULT] = {758848, 6641344}, [VARIANT_ZENSTYLE_RECOVERY] = {610272, 148576}, } }, /** Sony NWZ-E370 */ { /* Version 1.00.00 */ MODEL_NWZE370, "a615fdb70b3e1bfb0355a5bc2bf237ab", "1.00.00", { [VARIANT_DEFAULT] = {0, 16056320 } } }, { /* Version 1.00.01 */ MODEL_NWZE370, "ee83f3c6026cbcc07097867f06fd585f", "1.00.01", { [VARIANT_DEFAULT] = {0, 16515072 } } }, /** Sony NWZ-E360 */ { /* Version 1.00.00 */ MODEL_NWZE360, "d0047f8a87d456a0032297b3c802a1ff", "1.00.00", { [VARIANT_DEFAULT] = {0, 20652032 } } }, /** Sony NWZ-E380 */ { /* Version 1.00.00 */ MODEL_NWZE370, "412f8ccd453195c0bebcc1fd8376322f", "1.00.00", { [VARIANT_DEFAULT] = {0, 16429056 } } }, { /* Version 1.00.200 */ MODEL_NWZE370, "75cfa51078261c547717e11a4676f1af", "1.00.200", { [VARIANT_DEFAULT] = {0, 16429056 } } } }; static struct crypto_key_t zero_key = { .method = CRYPTO_KEY, .u.key = {0} }; static struct crypto_key_t *list_zero_key[] = { &zero_key, NULL }; static struct crypto_key_t *list_all_keys[] = { &zero_key, NULL }; static const struct imx_model_desc_t imx_models[] = { [MODEL_FUZEPLUS] = {"Fuze+", dualboot_fuzeplus, sizeof(dualboot_fuzeplus), "fuz+", 72, list_zero_key, 0, 0x40000000 }, [MODEL_ZENXFI2] = {"Zen X-Fi2", dualboot_zenxfi2, sizeof(dualboot_zenxfi2), "zxf2", 82, list_zero_key, 0, 0x40000000 }, [MODEL_ZENXFI3] = {"Zen X-Fi3", dualboot_zenxfi3, sizeof(dualboot_zenxfi3), "zxf3", 83, list_zero_key, 0, 0x40000000 }, [MODEL_ZENXFISTYLE] = {"Zen X-Fi Style", dualboot_zenxfistyle, sizeof(dualboot_zenxfistyle), "zxfs", 94, list_zero_key, 0, 0x40000000 }, [MODEL_ZENSTYLE] = {"Zen Style 100/300", NULL, 0, "", -1, list_zero_key, 0, 0x40000000 }, [MODEL_NWZE370] = {"NWZ-E370", dualboot_nwze370, sizeof(dualboot_nwze370), "e370", 88, list_zero_key, 0, 0x40000000 }, [MODEL_NWZE360] = {"NWZ-E360", dualboot_nwze360, sizeof(dualboot_nwze360), "e360", 89, list_zero_key, 0, 0x40000000 }, }; #define NR_IMX_SUMS (sizeof(imx_sums) / sizeof(imx_sums[0])) #define NR_IMX_MODELS (sizeof(imx_models) / sizeof(imx_models[0])) #define MAGIC_ROCK 0x726f636b /* 'rock' */ #define MAGIC_RECOVERY 0xfee1dead #define MAGIC_NORMAL 0xcafebabe #define MAGIC_CHARGE 0x67726863 /* 'chrg' */ const char *imx_error_to_string(enum imx_error_t err) { switch(err) { case IMX_SUCCESS: return "success"; case IMX_ERROR: return "error"; case IMX_OPEN_ERROR: return "open error"; case IMX_READ_ERROR: return "read error"; case IMX_NO_MATCH: return "no match"; case IMX_BOOT_INVALID: return "invalid"; case IMX_BOOT_MISMATCH: return "mismatch"; case IMX_BOOT_CHECKSUM_ERROR: return "checksum error"; case IMX_DONT_KNOW_HOW_TO_PATCH: return "don't know how to patch"; case IMX_VARIANT_MISMATCH: return "variant mismatch"; case IMX_WRITE_ERROR: return "write error"; case IMX_FIRST_SB_ERROR: return "sb error"; case IMX_MODEL_MISMATCH: return "model mismatch"; default: return "unknown error"; } } static void add_key_list(struct crypto_key_t **list) { while(*list != NULL) add_keys(*list++, 1); } static int rb_fw_get_sb_inst_count(struct rb_fw_t *fw) { return fw->nr_insts; } /* fill sb instruction for the firmware, fill fill rb_fw_get_sb_inst_count() instructions */ static void rb_fw_fill_sb(struct rb_fw_t *fw, struct sb_inst_t *inst, uint32_t entry_arg) { memcpy(inst, fw->insts, fw->nr_insts * sizeof(struct sb_inst_t)); /* copy data if needed */ for(int i = 0; i < fw->nr_insts; i++) if(fw->insts[i].inst == SB_INST_LOAD) fw->insts[i].data = memdup(fw->insts[i].data, fw->insts[i].size); /* replace call argument of the entry point */ inst[fw->entry_idx].argument = entry_arg; } static enum imx_error_t patch_std_zero_host_play(int jump_before, struct imx_option_t opt, struct sb_file_t *sb_file, struct rb_fw_t boot_fw) { /* We assume the file has three boot sections: ____, host, play and one * resource section rsrc. * * Dual Boot: * ---------- * We patch the file by inserting the dualboot code before the th * call in the ____ section. We give it as argument the section name 'rock' * and add a section called 'rock' after rsrc which contains the bootloader. * * Single Boot & Recovery: * ----------------------- * We patch the file by inserting the bootloader code after the th * call in the ____ section and get rid of everything else. In recovery mode, * we give 0xfee1dead as argument */ /* used to manipulate entries */ int nr_boot_inst = rb_fw_get_sb_inst_count(&boot_fw); /* first locate the good instruction */ struct sb_section_t *sec = &sb_file->sections[0]; int jump_idx = 0; while(jump_idx < sec->nr_insts && jump_before > 0) if(sec->insts[jump_idx++].inst == SB_INST_CALL) jump_before--; if(jump_idx == sec->nr_insts) { printf("[ERR] Cannot locate call in section ____\n"); return IMX_DONT_KNOW_HOW_TO_PATCH; } if(opt.output == IMX_DUALBOOT) { /* create a new instruction array with a hole for two instructions */ struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (sec->nr_insts + 2)); memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx); memcpy(new_insts + jump_idx + 2, sec->insts + jump_idx, sizeof(struct sb_inst_t) * (sec->nr_insts - jump_idx)); /* first instruction is be a load */ struct sb_inst_t *load = &new_insts[jump_idx]; memset(load, 0, sizeof(struct sb_inst_t)); load->inst = SB_INST_LOAD; load->size = imx_models[opt.model].dualboot_size; load->addr = imx_models[opt.model].dualboot_addr; /* duplicate memory because it will be free'd */ load->data = memdup(imx_models[opt.model].dualboot, imx_models[opt.model].dualboot_size); /* second instruction is a call */ struct sb_inst_t *call = &new_insts[jump_idx + 1]; memset(call, 0, sizeof(struct sb_inst_t)); call->inst = SB_INST_CALL; call->addr = imx_models[opt.model].dualboot_addr; call->argument = MAGIC_ROCK; /* free old instruction array */ free(sec->insts); sec->insts = new_insts; sec->nr_insts += 2; /* create a new section */ struct sb_section_t rock_sec; memset(&rock_sec, 0, sizeof(rock_sec)); /* section can have any number of instructions */ rock_sec.identifier = MAGIC_ROCK; rock_sec.alignment = BLOCK_SIZE; rock_sec.nr_insts = nr_boot_inst; rock_sec.insts = xmalloc(nr_boot_inst * sizeof(struct sb_inst_t)); rb_fw_fill_sb(&boot_fw, rock_sec.insts, MAGIC_NORMAL); sb_file->sections = augment_array(sb_file->sections, sizeof(struct sb_section_t), sb_file->nr_sections, &rock_sec, 1); sb_file->nr_sections++; return IMX_SUCCESS; } else if(opt.output == IMX_SINGLEBOOT || opt.output == IMX_RECOVERY) { bool recovery = (opt.output == IMX_RECOVERY); /* remove everything after the call and add instructions for firmware */ struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (jump_idx + nr_boot_inst)); memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx); for(int i = jump_idx; i < sec->nr_insts; i++) sb_free_instruction(sec->insts[i]); rb_fw_fill_sb(&boot_fw, &new_insts[jump_idx], recovery ? MAGIC_RECOVERY : MAGIC_NORMAL); free(sec->insts); sec->insts = new_insts; sec->nr_insts = jump_idx + nr_boot_inst; /* remove all other sections */ for(int i = 1; i < sb_file->nr_sections; i++) sb_free_section(sb_file->sections[i]); struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t)); memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t)); free(sb_file->sections); sb_file->sections = new_sec; sb_file->nr_sections = 1; return IMX_SUCCESS; } else if(opt.output == IMX_CHARGE) { /* throw away everything except the dualboot stub with a special argument */ struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * 2); /* first instruction is be a load */ struct sb_inst_t *load = &new_insts[0]; memset(load, 0, sizeof(struct sb_inst_t)); load->inst = SB_INST_LOAD; load->size = imx_models[opt.model].dualboot_size; load->addr = imx_models[opt.model].dualboot_addr; /* duplicate memory because it will be free'd */ load->data = memdup(imx_models[opt.model].dualboot, imx_models[opt.model].dualboot_size); /* second instruction is a call */ struct sb_inst_t *call = &new_insts[1]; memset(call, 0, sizeof(struct sb_inst_t)); call->inst = SB_INST_CALL; call->addr = imx_models[opt.model].dualboot_addr; call->argument = MAGIC_CHARGE; /* free old instruction array */ free(sec->insts); sec->insts = new_insts; sec->nr_insts = 2; /* remove all other sections */ for(int i = 1; i < sb_file->nr_sections; i++) sb_free_section(sb_file->sections[i]); struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t)); memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t)); free(sb_file->sections); sb_file->sections = new_sec; sb_file->nr_sections = 1; return IMX_SUCCESS; } else { printf("[ERR] Bad output type !\n"); return IMX_DONT_KNOW_HOW_TO_PATCH; } } static enum imx_error_t parse_subversion(const char *s, const char *end, uint16_t *ver) { int len = (end == NULL) ? strlen(s) : end - s; if(len > 4) { printf("[ERR] Bad subversion override '%s' (too long)\n", s); return IMX_ERROR; } *ver = 0; for(int i = 0; i < len; i++) { if(!isdigit(s[i])) { printf("[ERR] Bad subversion override '%s' (not a digit)\n", s); return IMX_ERROR; } *ver = *ver << 4 | (s[i] - '0'); } return IMX_SUCCESS; } static enum imx_error_t parse_version(const char *s, struct sb_version_t *ver) { const char *dot1 = strchr(s, '.'); if(dot1 == NULL) { printf("[ERR] Bad version override '%s' (missing dot)\n", s); return IMX_ERROR; } const char *dot2 = strchr(dot1 + 1, '.'); if(dot2 == NULL) { printf("[ERR] Bad version override '%s' (missing second dot)\n", s); return IMX_ERROR; } enum imx_error_t ret = parse_subversion(s, dot1, &ver->major); if(ret != IMX_SUCCESS) return ret; ret = parse_subversion(dot1 + 1, dot2, &ver->minor); if(ret != IMX_SUCCESS) return ret; ret = parse_subversion(dot2 + 1, NULL, &ver->revision); if(ret != IMX_SUCCESS) return ret; return IMX_SUCCESS; } static enum imx_error_t patch_firmware(struct imx_option_t opt, struct sb_file_t *sb_file, struct rb_fw_t boot_fw) { if(opt.force_version) { enum imx_error_t err = parse_version(opt.force_version, &sb_file->product_ver); if(err != IMX_SUCCESS) return err; err = parse_version(opt.force_version, &sb_file->component_ver); if(err != IMX_SUCCESS) return err; } switch(opt.model) { case MODEL_FUZEPLUS: /* The Fuze+ uses the standard ____, host, play sections, patch after third * call in ____ section */ return patch_std_zero_host_play(3, opt, sb_file, boot_fw); case MODEL_ZENXFI3: /* The ZEN X-Fi3 uses the standard ____, hSst, pSay sections, patch after third * call in ____ section. Although sections names use the S variant, they are standard. */ return patch_std_zero_host_play(3, opt, sb_file, boot_fw); case MODEL_NWZE360: case MODEL_NWZE370: /* The NWZ-E360/E370 uses the standard ____, host, play sections, patch after first * call in ____ section. */ return patch_std_zero_host_play(1, opt, sb_file, boot_fw); case MODEL_ZENXFI2: /* The ZEN X-Fi2 has two types of firmware: recovery and normal. * Normal uses the standard ___, host, play sections and recovery only ____ */ switch(opt.fw_variant) { case VARIANT_ZENXFI2_RECOVERY: case VARIANT_ZENXFI2_NAND: case VARIANT_ZENXFI2_SD: return patch_std_zero_host_play(1, opt, sb_file, boot_fw); default: return IMX_DONT_KNOW_HOW_TO_PATCH; } break; case MODEL_ZENXFISTYLE: /* The ZEN X-Fi Style uses the standard ____, host, play sections, patch after first * call in ____ section. */ return patch_std_zero_host_play(1, opt, sb_file, boot_fw); default: return IMX_DONT_KNOW_HOW_TO_PATCH; } } static enum imx_error_t unpatch_std_zero_host_play(int jump_before, struct imx_option_t opt, struct sb_file_t *sb_file) { /* find rockbox section */ int rb_sec = -1; for(int i = 0; i < sb_file->nr_sections; i++) if(sb_file->sections[i].identifier == MAGIC_ROCK) rb_sec = i; if(rb_sec == -1) { printf("[ERR][INTERNAL] Cannot find rockbox section\n"); return IMX_ERROR; } /** 1) remove rockbox section */ /* free rockbox section */ sb_free_section(sb_file->sections[rb_sec]); /* create a new array of sections */ sb_file->nr_sections--; struct sb_section_t *new_sec = xmalloc(sb_file->nr_sections * sizeof(struct sb_section_t)); /* copy all sections exception rockbox */ memcpy(new_sec, sb_file->sections, rb_sec * sizeof(struct sb_section_t)); memcpy(new_sec + rb_sec, sb_file->sections + rb_sec + 1, (sb_file->nr_sections - rb_sec) * sizeof(struct sb_section_t)); /* free old array and replace it */ free(sb_file->sections); sb_file->sections = new_sec; /** 2) remove patch instructions in boot section */ struct sb_section_t *sec = &sb_file->sections[0]; int jump_idx = 0; while(jump_idx < sec->nr_insts && jump_before > 0) if(sec->insts[jump_idx++].inst == SB_INST_CALL) jump_before--; if(jump_idx == sec->nr_insts) { printf("[ERR] Cannot locate call in section ____\n"); return IMX_DONT_KNOW_HOW_TO_PATCH; } /* free two instructions */ sb_free_instruction(sec->insts[jump_idx]); sb_free_instruction(sec->insts[jump_idx + 1]); /* create a new array of instructions */ sec->nr_insts -= 2; struct sb_inst_t *new_inst = xmalloc(sec->nr_insts * sizeof(struct sb_inst_t)); /* copy all instructions except the two patch to remove */ memcpy(new_inst, sec->insts, jump_idx * sizeof(struct sb_inst_t)); memcpy(new_inst + jump_idx, sec->insts + jump_idx + 2, (sec->nr_insts - jump_idx) * sizeof(struct sb_inst_t)); /* free old array and replace it */ free(sec->insts); sec->insts = new_inst; return IMX_SUCCESS; } static enum imx_error_t unpatch_firmware(struct imx_option_t opt, struct sb_file_t *sb_file) { /* keep consistent with patch_firmware */ switch(opt.model) { case MODEL_FUZEPLUS: /* The Fuze+ uses the standard ____, host, play sections, patch after third * call in ____ section */ return unpatch_std_zero_host_play(3, opt, sb_file); case MODEL_ZENXFI3: /* The ZEN X-Fi3 uses the standard ____, hSst, pSay sections, patch after third * call in ____ section. Although sections names use the S variant, they are standard. */ return unpatch_std_zero_host_play(3, opt, sb_file); case MODEL_NWZE360: case MODEL_NWZE370: /* The NWZ-E360/E370 uses the standard ____, host, play sections, patch after first * call in ____ section. */ return unpatch_std_zero_host_play(1, opt, sb_file); case MODEL_ZENXFI2: /* The ZEN X-Fi2 has two types of firmware: recovery and normal. * Normal uses the standard ___, host, play sections and recovery only ____ */ switch(opt.fw_variant) { case VARIANT_ZENXFI2_RECOVERY: case VARIANT_ZENXFI2_NAND: case VARIANT_ZENXFI2_SD: return unpatch_std_zero_host_play(1, opt, sb_file); default: return IMX_DONT_KNOW_HOW_TO_PATCH; } break; case MODEL_ZENXFISTYLE: /* The ZEN X-Fi Style uses the standard ____, host, play sections, patch after first * call in ____ section. */ return unpatch_std_zero_host_play(1, opt, sb_file); default: return IMX_DONT_KNOW_HOW_TO_PATCH; } } static uint32_t get_uint32be(unsigned char *p) { return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; } void dump_imx_dev_info(const char *prefix) { printf("%smkimxboot models:\n", prefix); for(int i = 0; i < NR_IMX_MODELS; i++) { printf("%s %s: idx=%d rb_model=%s rb_num=%d\n", prefix, imx_models[i].model_name, i, imx_models[i].rb_model_name, imx_models[i].rb_model_num); } printf("%smkimxboot variants:\n", prefix); for(int i = 0; i < VARIANT_COUNT; i++) { printf("%s %d: %s\n", prefix, i, imx_fw_variant[i]); } printf("%smkimxboot mapping:\n", prefix); for(int i = 0; i < NR_IMX_SUMS; i++) { printf("%s md5sum=%s -> idx=%d, ver=%s\n", prefix, imx_sums[i].md5sum, imx_sums[i].model, imx_sums[i].version); for(int j = 0; j < VARIANT_COUNT; j++) if(imx_sums[i].fw_variants[j].size) printf("%s variant=%d -> offset=%#x size=%#x\n", prefix, j, (unsigned)imx_sums[i].fw_variants[j].offset, (unsigned)imx_sums[i].fw_variants[j].size); } } /* find an entry into imx_sums which matches the MD5 sum of a file */ static enum imx_error_t find_model_by_md5sum(uint8_t file_md5sum[16], int *md5_idx) { int i = 0; while(i < NR_IMX_SUMS) { uint8_t md5[20]; if(strlen(imx_sums[i].md5sum) != 32) { printf("[INFO] Invalid MD5 sum in imx_sums\n"); return IMX_ERROR; } for(int j = 0; j < 16; j++) { byte a, b; if(convxdigit(imx_sums[i].md5sum[2 * j], &a) || convxdigit(imx_sums[i].md5sum[2 * j + 1], &b)) { printf("[ERR][INTERNAL] Bad checksum format: %s\n", imx_sums[i].md5sum); return IMX_ERROR; } md5[j] = (a << 4) | b; } if(memcmp(file_md5sum, md5, 16) == 0) break; i++; } if(i == NR_IMX_SUMS) { printf("[WARN] MD5 sum doesn't match any known file\n"); return IMX_NO_MATCH; } *md5_idx = i; return IMX_SUCCESS; } /* read a file to a buffer */ static enum imx_error_t read_file(const char *file, void **buffer, size_t *size) { FILE *f = fopen(file, "rb"); if(f == NULL) { printf("[ERR] Cannot open file '%s' for reading: %m\n", file); return IMX_OPEN_ERROR; } fseek(f, 0, SEEK_END); *size = ftell(f); fseek(f, 0, SEEK_SET); *buffer = xmalloc(*size); if(fread(*buffer, *size, 1, f) != 1) { free(*buffer); fclose(f); printf("[ERR] Cannot read file '%s': %m\n", file); return IMX_READ_ERROR; } fclose(f); return IMX_SUCCESS; } /* write a file from a buffer */ static enum imx_error_t write_file(const char *file, void *buffer, size_t size) { FILE *f = fopen(file, "wb"); if(f == NULL) { printf("[ERR] Cannot open file '%s' for writing: %m\n", file); return IMX_OPEN_ERROR; } if(fwrite(buffer, size, 1, f) != 1) { fclose(f); printf("[ERR] Cannot write file '%s': %m\n", file); return IMX_WRITE_ERROR; } fclose(f); return IMX_SUCCESS; } /* compute MD5 sum of a buffer */ static enum imx_error_t compute_md5sum_buf(void *buf, size_t sz, uint8_t file_md5sum[16]) { md5_context ctx; md5_starts(&ctx); md5_update(&ctx, buf, sz); md5_finish(&ctx, file_md5sum); return IMX_SUCCESS; } /* compute MD5 sum of a buffer */ static enum imx_error_t compute_soft_md5sum_buf(struct sb_file_t *sb, uint8_t file_md5sum[16]) { md5_context ctx; md5_starts(&ctx); #define hash(obj) \ md5_update(&ctx, (void *)&obj, sizeof(obj)) /* various header fiels */ hash(sb->timestamp); hash(sb->drive_tag); hash(sb->drive_tag); hash(sb->first_boot_sec_id); hash(sb->flags); hash(sb->product_ver); hash(sb->component_ver); for(int i = 0; i < sb->nr_sections; i++) { struct sb_section_t *sec = &sb->sections[i]; hash(sec->identifier); uint32_t flags = sec->other_flags; if(!sec->is_data) flags |= SECTION_BOOTABLE; if(sec->is_cleartext) flags |= SECTION_CLEARTEXT; hash(flags); for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; switch(inst->inst) { case SB_INST_NOP: /* ignore them totally because they are used for padding */ break; case SB_INST_LOAD: hash(inst->inst); hash(inst->addr); md5_update(&ctx, inst->data, inst->size); break; case SB_INST_FILL: hash(inst->inst); hash(inst->addr); hash(inst->pattern); break; case SB_INST_JUMP: case SB_INST_CALL: hash(inst->inst); hash(inst->addr); hash(inst->argument); break; case SB_INST_MODE: hash(inst->inst); hash(inst->argument); break; case SB_INST_DATA: md5_update(&ctx, inst->data, inst->size); break; default: printf("[ERR][INTERNAL] Unexpected instruction %d\n", inst->inst); return IMX_ERROR; } } } #undef hash md5_finish(&ctx, file_md5sum); return IMX_SUCCESS; } /* compute MD5 of a file */ enum imx_error_t compute_md5sum(const char *file, uint8_t file_md5sum[16]) { void *buf; size_t sz; enum imx_error_t err = read_file(file, &buf, &sz); if(err != IMX_SUCCESS) return err; compute_md5sum_buf(buf, sz, file_md5sum); free(buf); return IMX_SUCCESS; } /* compute soft MD5 of a file */ enum imx_error_t compute_soft_md5sum(const char *file, uint8_t soft_md5sum[16]) { clear_keys(); add_key_list(list_all_keys); /* read file */ enum sb_error_t err; struct sb_file_t *sb = sb_read_file(file, false, NULL, generic_std_printf, &err); if(sb == NULL) { printf("[ERR] Cannot load SB file: %d\n", err); return err; } /* compute sum */ err = compute_soft_md5sum_buf(sb, soft_md5sum); /* release file */ sb_free(sb); return err; } /* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is * using our scramble format. */ static enum imx_error_t rb_fw_load_buf_scramble(struct rb_fw_t *fw, uint8_t *buf, size_t sz, enum imx_model_t model) { if(sz < 8) { printf("[ERR] Bootloader file is too small to be valid\n"); return IMX_BOOT_INVALID; } /* check model name */ uint8_t *name = buf + 4; if(memcmp(name, imx_models[model].rb_model_name, 4) != 0) { printf("[ERR] Bootloader model doesn't match found model for input file\n"); return IMX_BOOT_MISMATCH; } /* check checksum */ uint32_t sum = imx_models[model].rb_model_num; for(int i = 8; i < sz; i++) sum += buf[i]; if(sum != get_uint32be(buf)) { printf("[ERR] Bootloader checksum mismatch\n"); return IMX_BOOT_CHECKSUM_ERROR; } /* two instructions: load and jump */ fw->nr_insts = 2; fw->entry_idx = 1; fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t)); memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t)); fw->insts[0].inst = SB_INST_LOAD; fw->insts[0].addr = imx_models[model].bootloader_addr; fw->insts[0].size = sz - 8; fw->insts[0].data = memdup(buf + 8, sz - 8); fw->insts[1].inst = SB_INST_JUMP; fw->insts[1].addr = imx_models[model].bootloader_addr; return IMX_SUCCESS; } struct elf_user_t { void *buf; size_t sz; }; static bool elf_read(void *user, uint32_t addr, void *buf, size_t count) { struct elf_user_t *u = user; if(addr + count <= u->sz) { memcpy(buf, u->buf + addr, count); return true; } else return false; } /* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is * using ELF format. */ static enum imx_error_t rb_fw_load_buf_elf(struct rb_fw_t *fw, uint8_t *buf, size_t sz, enum imx_model_t model) { struct elf_params_t elf; struct elf_user_t user; user.buf = buf; user.sz = sz; elf_init(&elf); if(!elf_read_file(&elf, elf_read, generic_std_printf, &user)) { elf_release(&elf); printf("[ERR] Error parsing ELF file\n"); return IMX_BOOT_INVALID; } fw->nr_insts = elf_get_nr_sections(&elf) + 1; fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t)); fw->entry_idx = fw->nr_insts - 1; memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t)); struct elf_section_t *sec = elf.first_section; for(int i = 0; sec; i++, sec = sec->next) { fw->insts[i].addr = elf_translate_virtual_address(&elf, sec->addr); fw->insts[i].size = sec->size; if(sec->type == EST_LOAD) { fw->insts[i].inst = SB_INST_LOAD; fw->insts[i].data = memdup(sec->section, sec->size); } else if(sec->type == EST_FILL) { fw->insts[i].inst = SB_INST_FILL; fw->insts[i].pattern = sec->pattern; } else { printf("[WARN] Warning parsing ELF file: unsupported section type mapped to NOP!\n"); fw->insts[i].inst = SB_INST_NOP; } } fw->insts[fw->nr_insts - 1].inst = SB_INST_JUMP; if(!elf_get_start_addr(&elf, &fw->insts[fw->nr_insts - 1].addr)) { elf_release(&elf); printf("[ERROR] Error parsing ELF file: it has no entry point!\n"); return IMX_BOOT_INVALID; } elf_release(&elf); return IMX_SUCCESS; } /* Load a rockbox firwmare from a buffer. Data is copied. */ static enum imx_error_t rb_fw_load_buf(struct rb_fw_t *fw, uint8_t *buf, size_t sz, enum imx_model_t model) { /* detect file format */ if(sz >= 4 && buf[0] == 0x7f && memcmp(buf + 1, "ELF", 3) == 0) return rb_fw_load_buf_elf(fw, buf, sz, model); else return rb_fw_load_buf_scramble(fw, buf, sz, model); } /* load a rockbox firmware from a file. */ static enum imx_error_t rb_fw_load(struct rb_fw_t *fw, const char *file, enum imx_model_t model) { void *buf; size_t sz; int ret = read_file(file, &buf, &sz); if(ret == IMX_SUCCESS) { ret = rb_fw_load_buf(fw, buf, sz, model); free(buf); } return ret; } /* free rockbox firmware */ static void rb_fw_free(struct rb_fw_t *fw) { for(int i = 0; i < fw->nr_insts; i++) sb_free_instruction(fw->insts[i]); free(fw->insts); memset(fw, 0, sizeof(struct rb_fw_t)); } static bool contains_rockbox_bootloader(struct sb_file_t *sb_file) { for(int i = 0; i < sb_file->nr_sections; i++) if(sb_file->sections[i].identifier == MAGIC_ROCK) return true; return false; } /* modify sb_file to produce requested boot image */ static enum imx_error_t make_boot(struct sb_file_t *sb_file, const char *bootfile, struct imx_option_t opt) { /* things went smoothly, we have a SB image but it may not be suitable as an * input image: if it contains a rockbox bootloader, we need to remove it */ if(contains_rockbox_bootloader(sb_file)) { printf("[INFO] SB file contains a Rockbox bootloader, trying to remove it...\n"); enum imx_error_t ret = unpatch_firmware(opt, sb_file); if(ret != IMX_SUCCESS) return ret; } /* if asked to produce OF, don't do anything more */ if(opt.output == IMX_ORIG_FW) return IMX_SUCCESS; /* load rockbox file */ struct rb_fw_t boot_fw; enum imx_error_t ret = rb_fw_load(&boot_fw, bootfile, opt.model); if(ret != IMX_SUCCESS) return ret; /* produce file */ ret = patch_firmware(opt, sb_file, boot_fw); rb_fw_free(&boot_fw); return ret; } enum imx_error_t mkimxboot(const char *infile, const char *bootfile, const char *outfile, struct imx_option_t opt) { /* sanity check */ if(opt.fw_variant >= VARIANT_COUNT || opt.model >= MODEL_COUNT) return IMX_ERROR; /* dump tables */ dump_imx_dev_info("[INFO] "); /* load file */ void *buf; size_t offset = 0, size = 0; enum imx_error_t ret = read_file(infile, &buf, &size); if(ret != IMX_SUCCESS) return ret; /* compute MD5 sum of the file */ uint8_t file_md5sum[16]; compute_md5sum_buf(buf, size, file_md5sum); printf("[INFO] MD5 sum of the file: "); for(int i = 0; i < 16; i++) printf("%02x", file_md5sum[i]); printf("\n"); /* find model */ int md5_idx; ret = find_model_by_md5sum(file_md5sum, &md5_idx); /* is this a known firmware upgrade ? */ if(ret == IMX_SUCCESS) { enum imx_model_t model = imx_sums[md5_idx].model; printf("[INFO] File is for model %d (%s, version %s)\n", model, imx_models[model].model_name, imx_sums[md5_idx].version); /* check the model is the expected one */ if(opt.model == MODEL_UNKNOWN) opt.model = model; else if(opt.model != model) { printf("[ERR] Model mismatch, was expecting model %d (%s)\n", opt.model, imx_models[opt.model].model_name); free(buf); return IMX_MODEL_MISMATCH; } /* use database values */ offset = imx_sums[md5_idx].fw_variants[opt.fw_variant].offset; size = imx_sums[md5_idx].fw_variants[opt.fw_variant].size; if(size == 0) { printf("[ERR] Input file does not contain variant '%s'\n", imx_fw_variant[opt.fw_variant]); free(buf); return IMX_VARIANT_MISMATCH; } /* special case: if we need to produce the OF, just bypass read/write of * the SB file and output this chunk of the file. This is faster and it * also avoids modifying the OF by reconstructing it */ if(opt.output == IMX_ORIG_FW) { printf("[INFO] Extracting original firmware...\n"); ret = write_file(outfile, buf + offset, size); free(buf); return ret; } } else { printf("[INFO] File doesn't have a known MD5 sum, assuming it's a SB image...\n"); /* image didn't match, so we expect the file to be a raw SB image, either * produced by mkimxboot when uninstalling bootloader or after installing RB, * so load all known keys and go on */ /* To be more user friendly, give a nice error message if we detect * the file is not a SB file */ if(guess_sb_version(infile) == SB_VERSION_UNK) { printf("[ERR] Your firmware doesn't look like a SB file\n"); printf("[ERR] This is probably a firmware upgrade\n"); printf("[ERR] Unfortunately, this tool doesn't know about it yet\n"); printf("[ERR] Please report to the developers to add it\n"); free(buf); return IMX_ERROR; } } /* to proceed further, we need to know the model */ if(opt.model == MODEL_UNKNOWN) { printf("[ERR] Cannot do processing of soft image without knowing the model\n"); free(buf); return IMX_MODEL_MISMATCH; } /* load image */ g_debug = opt.debug; clear_keys(); add_key_list(imx_models[opt.model].keys); enum sb_error_t err; struct sb_file_t *sb_file = sb_read_memory(buf + offset, size, false, NULL, generic_std_printf, &err); if(sb_file == NULL) { printf("[ERR] Cannot open firmware as SB file: %d\n", err); free(buf); return IMX_FIRST_SB_ERROR + err; } /* modify image */ ret = make_boot(sb_file, bootfile, opt); if(ret == IMX_SUCCESS) { /* write image */ ret = sb_write_file(sb_file, outfile, NULL, generic_std_printf); } /* cleanup */ sb_free(sb_file); free(buf); return ret; }