summaryrefslogtreecommitdiffstats
path: root/apps/buffering.c
blob: cbc47c63e7e0c921cfd3d1e315d73f8c73be6773 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2007 Nicolas Pennequin
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include "config.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <inttypes.h>
#include "buffering.h"

#include "storage.h"
#include "system.h"
#include "thread.h"
#include "file.h"
#include "panic.h"
#include "lcd.h"
#include "font.h"
#include "button.h"
#include "kernel.h"
#include "tree.h"
#include "debug.h"
#include "settings.h"
#include "codecs.h"
#include "audio.h"
#include "mp3_playback.h"
#include "usb.h"
#include "screens.h"
#include "playlist.h"
#include "pcmbuf.h"
#include "appevents.h"
#include "metadata.h"
#ifdef HAVE_ALBUMART
#include "albumart.h"
#include "jpeg_load.h"
#include "bmp.h"
#include "playback.h"
#endif

#define GUARD_BUFSIZE   (32*1024)

/* Define LOGF_ENABLE to enable logf output in this file */
/*#define LOGF_ENABLE*/
#include "logf.h"

/* macros to enable logf for queues
   logging on SYS_TIMEOUT can be disabled */
#ifdef SIMULATOR
/* Define this for logf output of all queuing except SYS_TIMEOUT */
#define BUFFERING_LOGQUEUES
/* Define this to logf SYS_TIMEOUT messages */
/* #define BUFFERING_LOGQUEUES_SYS_TIMEOUT */
#endif

#ifdef BUFFERING_LOGQUEUES
#define LOGFQUEUE logf
#else
#define LOGFQUEUE(...)
#endif

#ifdef BUFFERING_LOGQUEUES_SYS_TIMEOUT
#define LOGFQUEUE_SYS_TIMEOUT logf
#else
#define LOGFQUEUE_SYS_TIMEOUT(...)
#endif

/* default point to start buffer refill */
#define BUFFERING_DEFAULT_WATERMARK      (1024*128)
/* amount of data to read in one read() call */
#define BUFFERING_DEFAULT_FILECHUNK      (1024*32)

#define BUF_HANDLE_MASK                  0x7FFFFFFF


/* assert(sizeof(struct memory_handle)%4==0) */
struct memory_handle {
    int id;                    /* A unique ID for the handle */
    enum data_type type;       /* Type of data buffered with this handle */
    char path[MAX_PATH];       /* Path if data originated in a file */
    int fd;                    /* File descriptor to path (-1 if closed) */
    size_t data;               /* Start index of the handle's data buffer */
    volatile size_t ridx;      /* Read pointer, relative to the main buffer */
    size_t widx;               /* Write pointer, relative to the main buffer */
    size_t filesize;           /* File total length */
    size_t filerem;            /* Remaining bytes of file NOT in buffer */
    volatile size_t available; /* Available bytes to read from buffer */
    size_t offset;             /* Offset at which we started reading the file */
    struct memory_handle *next;
};
/* invariant: filesize == offset + available + filerem */


struct buf_message_data
{
    int handle_id;
    intptr_t data;
};

static char *buffer;
static char *guard_buffer;

static size_t buffer_len;

static volatile size_t buf_widx;  /* current writing position */
static volatile size_t buf_ridx;  /* current reading position */
/* buf_*idx are values relative to the buffer, not real pointers. */

/* Configuration */
static size_t conf_watermark = 0; /* Level to trigger filebuf fill */
#if MEMORYSIZE > 8
static size_t high_watermark = 0; /* High watermark for rebuffer */
#endif

/* current memory handle in the linked list. NULL when the list is empty. */
static struct memory_handle *cur_handle;
/* first memory handle in the linked list. NULL when the list is empty. */
static struct memory_handle *first_handle;

static int num_handles;  /* number of handles in the list */

static int base_handle_id;

/* Main lock for adding / removing handles */
static struct mutex llist_mutex SHAREDBSS_ATTR;

/* Handle cache (makes find_handle faster).
   This is global so that move_handle and rm_handle can invalidate it. */
static struct memory_handle *cached_handle = NULL;

static struct data_counters
{
    size_t remaining;   /* Amount of data needing to be buffered */
    size_t wasted;      /* Amount of space available for freeing */
    size_t buffered;    /* Amount of data currently in the buffer */
    size_t useful;      /* Amount of data still useful to the user */
} data_counters;


/* Messages available to communicate with the buffering thread */
enum
{
    Q_BUFFER_HANDLE = 1, /* Request buffering of a handle, this should not be
                            used in a low buffer situation. */
    Q_REBUFFER_HANDLE,   /* Request reset and rebuffering of a handle at a new
                            file starting position. */
    Q_CLOSE_HANDLE,      /* Request closing a handle */
    Q_BASE_HANDLE,       /* Set the reference handle for buf_useful_data */

    /* Configuration: */
    Q_START_FILL,        /* Request that the buffering thread initiate a buffer
                            fill at its earliest convenience */
    Q_HANDLE_ADDED,      /* Inform the buffering thread that a handle was added,
                            (which means the disk is spinning) */
};

/* Buffering thread */
static void buffering_thread(void);
static long buffering_stack[(DEFAULT_STACK_SIZE + 0x2000)/sizeof(long)];
static const char buffering_thread_name[] = "buffering";
static unsigned int buffering_thread_id = 0;
static struct event_queue buffering_queue;
static struct queue_sender_list buffering_queue_sender_list;



/* Ring buffer helper functions */

static inline uintptr_t ringbuf_offset(const void *ptr)
{
    return (uintptr_t)(ptr - (void*)buffer);
}

/* Buffer pointer (p) plus value (v), wrapped if necessary */
static inline uintptr_t ringbuf_add(uintptr_t p, size_t v)
{
    uintptr_t res = p + v;
    if (res >= buffer_len)
        res -= buffer_len; /* wrap if necssary */
    return res;
}


/* Buffer pointer (p) minus value (v), wrapped if necessary */
static inline uintptr_t ringbuf_sub(uintptr_t p, size_t v)
{
    uintptr_t res = p;
    if (p < v)
        res += buffer_len; /* wrap */
        
    return res - v;
}


/* How far value (v) plus buffer pointer (p1) will cross buffer pointer (p2) */
static inline ssize_t ringbuf_add_cross(uintptr_t p1, size_t v, uintptr_t p2)
{
    ssize_t res = p1 + v - p2;
    if (p1 >= p2) /* wrap if necessary */
        res -= buffer_len;

    return res;
}

/* Bytes available in the buffer */
#define BUF_USED ringbuf_sub(buf_widx, buf_ridx)

/*
LINKED LIST MANAGEMENT
======================

add_handle  : Add a handle to the list
rm_handle   : Remove a handle from the list
find_handle : Get a handle pointer from an ID
move_handle : Move a handle in the buffer (with or without its data)

These functions only handle the linked list structure. They don't touch the
contents of the struct memory_handle headers. They also change the buf_*idx
pointers when necessary and manage the handle IDs.

The first and current (== last) handle are kept track of.
A new handle is added at buf_widx and becomes the current one.
buf_widx always points to the current writing position for the current handle
buf_ridx always points to the location of the first handle.
buf_ridx == buf_widx means the buffer is empty.
*/


/* Add a new handle to the linked list and return it. It will have become the
   new current handle.
   data_size must contain the size of what will be in the handle.
   can_wrap tells us whether this type of data may wrap on buffer
   alloc_all tells us if we must immediately be able to allocate data_size
   returns a valid memory handle if all conditions for allocation are met.
           NULL if there memory_handle itself cannot be allocated or if the
           data_size cannot be allocated and alloc_all is set. */
static struct memory_handle *add_handle(size_t data_size, bool can_wrap,
                                        bool alloc_all)
{
    /* gives each handle a unique id */
    static int cur_handle_id = 0;
    size_t shift;
    size_t widx, new_widx;
    size_t len;
    ssize_t overlap;

    if (num_handles >= BUF_MAX_HANDLES)
        return NULL;

    widx = buf_widx;

    if (cur_handle && cur_handle->filerem > 0) {
        /* the current handle hasn't finished buffering. We can only add
           a new one if there is already enough free space to finish
           the buffering. */
        size_t req = cur_handle->filerem;
        if (ringbuf_add_cross(cur_handle->widx, req, buf_ridx) >= 0) {
            /* Not enough space to finish allocation */
            return NULL;
        } else {
            /* Allocate the remainder of the space for the current handle */
            widx = ringbuf_add(cur_handle->widx, cur_handle->filerem);
        }
    }

    /* align to 4 bytes up always leaving a gap */
    new_widx = ringbuf_add(widx, 4) & ~3;

    len = data_size + sizeof(struct memory_handle);

    /* First, will the handle wrap? */
    /* If the handle would wrap, move to the beginning of the buffer,
     * or if the data must not but would wrap, move it to the beginning */
    if (new_widx + sizeof(struct memory_handle) > buffer_len ||
                   (!can_wrap && new_widx + len > buffer_len)) {
        new_widx = 0;
    }

    /* How far we shifted the new_widx to align things, must be < buffer_len */
    shift = ringbuf_sub(new_widx, widx);

    /* How much space are we short in the actual ring buffer? */
    overlap = ringbuf_add_cross(widx, shift + len, buf_ridx);
    if (overlap >= 0 && (alloc_all || (size_t)overlap >= data_size)) {
        /* Not enough space for required allocations */
        return NULL;
    }

    /* There is enough space for the required data, advance the buf_widx and
     * initialize the struct */
    buf_widx = new_widx;

    struct memory_handle *new_handle =
        (struct memory_handle *)(&buffer[buf_widx]);

    /* Prevent buffering thread from looking at it */
    new_handle->filerem = 0;

    /* only advance the buffer write index of the size of the struct */
    buf_widx = ringbuf_add(buf_widx, sizeof(struct memory_handle));

    new_handle->id = cur_handle_id;
    /* Wrap signed int is safe and 0 doesn't happen */
    cur_handle_id = (cur_handle_id + 1) & BUF_HANDLE_MASK;
    new_handle->next = NULL;
    num_handles++;

    if (!first_handle)
        /* the new handle is the first one */
        first_handle = new_handle;

    if (cur_handle)
        cur_handle->next = new_handle;

    cur_handle = new_handle;

    return new_handle;
}

/* Delete a given memory handle from the linked list
   and return true for success. Nothing is actually erased from memory. */
static bool rm_handle(const struct memory_handle *h)
{
    if (h == NULL)
        return true;

    if (h == first_handle) {
        first_handle = h->next;
        if (h == cur_handle) {
            /* h was the first and last handle: the buffer is now empty */
            cur_handle = NULL;
            buf_ridx = buf_widx = 0;
        } else {
            /* update buf_ridx to point to the new first handle */
            buf_ridx = (size_t)ringbuf_offset(first_handle);
        }
    } else {
        struct memory_handle *m = first_handle;
        /* Find the previous handle */
        while (m && m->next != h) {
            m = m->next;
        }
        if (m && m->next == h) {
            m->next = h->next;
            if (h == cur_handle) {
                cur_handle = m;
                buf_widx = cur_handle->widx;
            }
        } else {
            return false;
        }
    }

    /* Invalidate the cache to prevent it from keeping the old location of h */
    if (h == cached_handle)
        cached_handle = NULL;

    num_handles--;
    return true;
}

/* Return a pointer to the memory handle of given ID.
   NULL if the handle wasn't found */
static struct memory_handle *find_handle(int handle_id)
{
    if (handle_id < 0)
        return NULL;

    /* simple caching because most of the time the requested handle
    will either be the same as the last, or the one after the last */
    if (cached_handle)
    {
        if (cached_handle->id == handle_id) {
            return cached_handle;
        } else if (cached_handle->next &&
                   (cached_handle->next->id == handle_id)) {
            cached_handle = cached_handle->next;
            return cached_handle;
        }
    }

    struct memory_handle *m = first_handle;
    while (m && m->id != handle_id) {
        m = m->next;
    }
    /* This condition can only be reached with !m or m->id == handle_id */
    if (m)
        cached_handle = m;

    return m;
}

/* Move a memory handle and data_size of its data delta bytes along the buffer.
   delta maximum bytes available to move the handle.  If the move is performed
         it is set to the actual distance moved.
   data_size is the amount of data to move along with the struct.
   returns true if the move is successful and false if the handle is NULL,
           the  move would be less than the size of a memory_handle after
           correcting for wraps or if the handle is not found in the linked
           list for adjustment.  This function has no side effects if false
           is returned. */
static bool move_handle(struct memory_handle **h, size_t *delta,
                        size_t data_size, bool can_wrap)
{
    struct memory_handle *dest;
    const struct memory_handle *src;
    size_t final_delta = *delta, size_to_move;
    uintptr_t oldpos, newpos;
    intptr_t overlap, overlap_old;

    if (h == NULL || (src = *h) == NULL)
        return false;

    size_to_move = sizeof(struct memory_handle) + data_size;

    /* Align to four bytes, down */
    final_delta &= ~3;
    if (final_delta < sizeof(struct memory_handle)) {
        /* It's not legal to move less than the size of the struct */
        return false;
    }

    oldpos = ringbuf_offset(src);
    newpos = ringbuf_add(oldpos, final_delta);
    overlap = ringbuf_add_cross(newpos, size_to_move, buffer_len);
    overlap_old = ringbuf_add_cross(oldpos, size_to_move, buffer_len);

    if (overlap > 0) {
        /* Some part of the struct + data would wrap, maybe ok */
        ssize_t correction = 0;
        /* If the overlap lands inside the memory_handle */
        if (!can_wrap) {
            /* Otherwise the overlap falls in the data area and must all be
             * backed out.  This may become conditional if ever we move
             * data that is allowed to wrap (ie audio) */
            correction = overlap;
        } else if ((uintptr_t)overlap > data_size) {
            /* Correct the position and real delta to prevent the struct from
             * wrapping, this guarantees an aligned delta if the struct size is
             * aligned and the buffer is aligned */
            correction = overlap - data_size;
        }
        if (correction) {
            /* Align correction to four bytes up */
            correction = (correction + 3) & ~3;
            if (final_delta < correction + sizeof(struct memory_handle)) {
                /* Delta cannot end up less than the size of the struct */
                return false;
            }
            newpos -= correction;
            overlap -= correction;/* Used below to know how to split the data */
            final_delta -= correction;
        }
    }

    dest = (struct memory_handle *)(&buffer[newpos]);

    if (src == first_handle) {
        first_handle = dest;
        buf_ridx = newpos;
    } else {
        struct memory_handle *m = first_handle;
        while (m && m->next != src) {
            m = m->next;
        }
        if (m && m->next == src) {
            m->next = dest;
        } else {
            return false;
        }
    }

    /* Update the cache to prevent it from keeping the old location of h */
    if (src == cached_handle)
        cached_handle = dest;

    /* the cur_handle pointer might need updating */
    if (src == cur_handle)
        cur_handle = dest;

    /* x = handle(s) following this one...
     * ...if last handle, unmoveable if metadata, only shrinkable if audio.
     * In other words, no legal move can be made that would have the src head
     * and dest tail of the data overlap itself. These facts reduce the
     * problem to four essential permutations.
     *
     * movement: always "clockwise" >>>>
     *
     * (src nowrap, dest nowrap)
     * |0123  x |
     * |  0123x | etc...
     * move: "0123"
     *
     * (src nowrap, dest wrap)
     * |  x0123 |
     * |23x   01|
     * move: "23", "01"
     *
     * (src wrap, dest nowrap)
     * |23   x01|
     * | 0123x  |
     * move: "23", "01"
     *
     * (src wrap, dest wrap)
     * |23 x  01|
     * |123x   0|
     * move: "23", "1", "0"
     */
    if (overlap_old > 0) {
        /* Move over already wrapped data by the final delta */
        memmove(&buffer[final_delta], buffer, overlap_old);
        if (overlap <= 0)
            size_to_move -= overlap_old;
    }

    if (overlap > 0) {
        /* Move data that now wraps to the beginning */
        size_to_move -= overlap;
        memmove(buffer, SKIPBYTES(src, size_to_move),
                overlap_old > 0 ? final_delta : (size_t)overlap);
    }

    /* Move leading fragment containing handle struct */
    memmove(dest, src, size_to_move);

    /* Update the caller with the new location of h and the distance moved */
    *h = dest;
    *delta = final_delta;
    return true;
}


/*
BUFFER SPACE MANAGEMENT
=======================

update_data_counters: Updates the values in data_counters
buffer_is_low   : Returns true if the amount of useful data in the buffer is low
buffer_handle   : Buffer data for a handle
rebuffer_handle : Seek to a nonbuffered part of a handle by rebuffering the data
shrink_handle   : Free buffer space by moving a handle
fill_buffer     : Call buffer_handle for all handles that have data to buffer

These functions are used by the buffering thread to manage buffer space.
*/

static void update_data_counters(struct data_counters *dc)
{
    size_t buffered = 0;
    size_t wasted = 0;
    size_t remaining = 0;
    size_t useful = 0;

    struct memory_handle *m;
    bool is_useful;

    if (dc == NULL)
        dc = &data_counters;

    mutex_lock(&llist_mutex);

    m = find_handle(base_handle_id);
    is_useful = m == NULL;

    m = first_handle;
    while (m) {
        buffered += m->available;
        wasted += ringbuf_sub(m->ridx, m->data);
        remaining += m->filerem;

        if (m->id == base_handle_id)
            is_useful = true;

        if (is_useful)
            useful += ringbuf_sub(m->widx, m->ridx);

        m = m->next;
    }

    mutex_unlock(&llist_mutex);

    dc->buffered = buffered;
    dc->wasted = wasted;
    dc->remaining = remaining;
    dc->useful = useful;
}

static inline bool buffer_is_low(void)
{
    update_data_counters(NULL);
    return data_counters.useful < (conf_watermark / 2);
}

/* Q_BUFFER_HANDLE event and buffer data for the given handle.
   Return whether or not the buffering should continue explicitly.  */
static bool buffer_handle(int handle_id, size_t to_buffer)
{
    logf("buffer_handle(%d)", handle_id);
    struct memory_handle *h = find_handle(handle_id);
    bool stop = false;

    if (!h)
        return true;

    if (h->filerem == 0) {
        /* nothing left to buffer */
        return true;
    }

    if (h->fd < 0) { /* file closed, reopen */
        if (*h->path)
            h->fd = open(h->path, O_RDONLY);

        if (h->fd < 0)
        {
            /* could not open the file, truncate it where it is */
            h->filesize -= h->filerem;
            h->filerem = 0;
            return true;
        }

        if (h->offset)
            lseek(h->fd, h->offset, SEEK_SET);
    }

    trigger_cpu_boost();

    if (h->type == TYPE_ID3) {
        if (!get_metadata((struct mp3entry *)(buffer + h->data),
                          h->fd, h->path)) {
            /* metadata parsing failed: clear the buffer. */
            memset(buffer + h->data, 0, sizeof(struct mp3entry));
        }
        close(h->fd);
        h->fd = -1;
        h->filerem = 0;
        h->available = sizeof(struct mp3entry);
        h->widx += sizeof(struct mp3entry);
        send_event(BUFFER_EVENT_FINISHED, &handle_id);
        return true;
    }

    while (h->filerem > 0 && !stop)
    {
        /* max amount to copy */
        ssize_t copy_n = MIN( MIN(h->filerem, BUFFERING_DEFAULT_FILECHUNK),
                             buffer_len - h->widx);
        uintptr_t offset = h->next ? ringbuf_offset(h->next) : buf_ridx;
        ssize_t overlap = ringbuf_add_cross(h->widx, copy_n, offset) + 1;

        if (overlap > 0) {
            /* read only up to available space and stop if it would overwrite
               or be on top of the reading position or the next handle */
            stop = true;
            copy_n -= overlap;
        }

        if (copy_n <= 0)
            return false; /* no space for read */

        /* rc is the actual amount read */
        int rc = read(h->fd, &buffer[h->widx], copy_n);

        if (rc < 0) {
            /* Some kind of filesystem error, maybe recoverable if not codec */
            if (h->type == TYPE_CODEC) {
                logf("Partial codec");
                break;
            }

            DEBUGF("File ended %ld bytes early\n", (long)h->filerem);
            h->filesize -= h->filerem;
            h->filerem = 0;
            break;
        }

        /* Advance buffer */
        h->widx = ringbuf_add(h->widx, rc);
        if (h == cur_handle)
            buf_widx = h->widx;
        h->available += rc;
        h->filerem -= rc;

        /* If this is a large file, see if we need to break or give the codec
         * more time */
        if (h->type == TYPE_PACKET_AUDIO &&
            pcmbuf_is_lowdata() && !buffer_is_low()) {
            sleep(1);
        } else {
            yield();
        }

        if (to_buffer == 0) {
            /* Normal buffering - check queue */
            if(!queue_empty(&buffering_queue))
                break;
        } else {
            if (to_buffer <= (size_t)rc)
                break; /* Done */
            to_buffer -= rc;
        }
    }

    if (h->filerem == 0) {
        /* finished buffering the file */
        close(h->fd);
        h->fd = -1;
        send_event(BUFFER_EVENT_FINISHED, &handle_id);
    }

    return !stop;
}

/* Close the specified handle id and free its allocation. */
static bool close_handle(int handle_id)
{
    bool retval = true;
    struct memory_handle *h;

    mutex_lock(&llist_mutex);
    h = find_handle(handle_id);

    /* If the handle is not found, it is closed */
    if (h) {
        if (h->fd >= 0) {
            close(h->fd);
            h->fd = -1;
        }

        /* rm_handle returns true unless the handle somehow persists after
           exit */
        retval = rm_handle(h);
    }

    mutex_unlock(&llist_mutex);
    return retval;
}

/* Free buffer space by moving the handle struct right before the useful
   part of its data buffer or by moving all the data. */
static void shrink_handle(struct memory_handle *h)
{
    size_t delta;

    if (!h)
        return;

    if (h->type == TYPE_ID3 || h->type == TYPE_CUESHEET ||
        h->type == TYPE_BITMAP || h->type == TYPE_CODEC ||
        h->type == TYPE_ATOMIC_AUDIO)
    {
        /* metadata handle: we can move all of it */
        if (!h->next || h->filerem != 0)
            return; /* Last handle or not finished loading */

        uintptr_t handle_distance =
            ringbuf_sub(ringbuf_offset(h->next), h->data);
        delta = handle_distance - h->available;

        /* The value of delta might change for alignment reasons */
        if (!move_handle(&h, &delta, h->available, h->type==TYPE_CODEC))
            return;

        size_t olddata = h->data;
        h->data = ringbuf_add(h->data, delta);
        h->ridx = ringbuf_add(h->ridx, delta);
        h->widx = ringbuf_add(h->widx, delta);

        if (h->type == TYPE_ID3 && h->filesize == sizeof(struct mp3entry)) {
            /* when moving an mp3entry we need to readjust its pointers. */
            adjust_mp3entry((struct mp3entry *)&buffer[h->data],
                            (void *)&buffer[h->data],
                            (const void *)&buffer[olddata]);
        } else if (h->type == TYPE_BITMAP) {
            /* adjust the bitmap's pointer */
            struct bitmap *bmp = (struct bitmap *)&buffer[h->data];
            bmp->data = &buffer[h->data + sizeof(struct bitmap)];
        }
    } else {
        /* only move the handle struct */
        delta = ringbuf_sub(h->ridx, h->data);
        if (!move_handle(&h, &delta, 0, true))
            return;

        h->data = ringbuf_add(h->data, delta);
        h->available -= delta;
        h->offset += delta;
    }
}

/* Fill the buffer by buffering as much data as possible for handles that still
   have data left to buffer
   Return whether or not to continue filling after this */
static bool fill_buffer(void)
{
    logf("fill_buffer()");
    struct memory_handle *m = first_handle;

    shrink_handle(m);

    while (queue_empty(&buffering_queue) && m) {
        if (m->filerem > 0) {
            if (!buffer_handle(m->id, 0)) {
                m = NULL;
                break;
            }
        }
        m = m->next;
    }

    if (m) {
        return true;
    } else {
        /* only spin the disk down if the filling wasn't interrupted by an
           event arriving in the queue. */
        storage_sleep();
        return false;
    }
}

#ifdef HAVE_ALBUMART
/* Given a file descriptor to a bitmap file, write the bitmap data to the
   buffer, with a struct bitmap and the actual data immediately following.
   Return value is the total size (struct + data). */
static int load_image(int fd, const char *path,
                      struct bufopen_bitmap_data *data)
{
    int rc;
    struct bitmap *bmp = (struct bitmap *)&buffer[buf_widx];
    struct dim *dim = data->dim;
    struct mp3_albumart *aa = data->embedded_albumart;

    /* get the desired image size */
    bmp->width = dim->width, bmp->height = dim->height;
    /* FIXME: alignment may be needed for the data buffer. */
    bmp->data = &buffer[buf_widx + sizeof(struct bitmap)];
#ifndef HAVE_JPEG
    (void) path;
#endif
#if (LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)
    bmp->maskdata = NULL;
#endif

    int free = (int)MIN(buffer_len - BUF_USED, buffer_len - buf_widx)
                               - sizeof(struct bitmap);

#ifdef HAVE_JPEG
    if (aa != NULL) {
        lseek(fd, aa->pos, SEEK_SET);
        rc = clip_jpeg_fd(fd, aa->size, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
                         FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
    }
    else if (strcmp(path + strlen(path) - 4, ".bmp"))
        rc = read_jpeg_fd(fd, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
                         FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
    else
#endif
        rc = read_bmp_fd(fd, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
                         FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
    return rc + (rc > 0 ? sizeof(struct bitmap) : 0);
}
#endif


/*
MAIN BUFFERING API CALLS
========================

bufopen     : Request the opening of a new handle for a file
bufalloc    : Open a new handle for data other than a file.
bufclose    : Close an open handle
bufseek     : Set the read pointer in a handle
bufadvance  : Move the read pointer in a handle
bufread     : Copy data from a handle into a given buffer
bufgetdata  : Give a pointer to the handle's data

These functions are exported, to allow interaction with the buffer.
They take care of the content of the structs, and rely on the linked list
management functions for all the actual handle management work.
*/


/* Reserve space in the buffer for a file.
   filename: name of the file to open
   offset: offset at which to start buffering the file, useful when the first
           offset bytes of the file aren't needed.
   type: one of the data types supported (audio, image, cuesheet, others
   user_data: user data passed possibly passed in subcalls specific to a
              data_type (only used for image (albumart) buffering so far )
   return value: <0 if the file cannot be opened, or one file already
   queued to be opened, otherwise the handle for the file in the buffer
*/
int bufopen(const char *file, size_t offset, enum data_type type,
            void *user_data)
{
#ifndef HAVE_ALBUMART
    /* currently only used for aa loading */
    (void)user_data;
#endif
    int handle_id = ERR_BUFFER_FULL;

    /* No buffer refs until after the mutex_lock call! */

    if (type == TYPE_ID3) {
        /* ID3 case: allocate space, init the handle and return. */
        mutex_lock(&llist_mutex);

        struct memory_handle *h =
            add_handle(sizeof(struct mp3entry), false, true);

        if (h) {
            handle_id = h->id;
            h->fd = -1;
            h->filesize = sizeof(struct mp3entry);
            h->offset = 0;
            h->data = buf_widx;
            h->ridx = buf_widx;
            h->widx = buf_widx;
            h->available = 0;
            h->type = type;
            strlcpy(h->path, file, MAX_PATH);

            buf_widx += sizeof(struct mp3entry);  /* safe because the handle
                                                     can't wrap */
            h->filerem = sizeof(struct mp3entry);

            /* Inform the buffering thread that we added a handle */
            LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", handle_id);
            queue_post(&buffering_queue, Q_HANDLE_ADDED, handle_id);
        }

        mutex_unlock(&llist_mutex);
        return handle_id;
    }
#ifdef APPLICATION
    /* loading code from memory is not supported in application builds */
    else if (type == TYPE_CODEC)
        return ERR_UNSUPPORTED_TYPE;
#endif
    /* Other cases: there is a little more work. */
    int fd = open(file, O_RDONLY);
    if (fd < 0)
        return ERR_FILE_ERROR;

    size_t size = 0;
#ifdef HAVE_ALBUMART
    if (type == TYPE_BITMAP) {
        /* if albumart is embedded, the complete file is not buffered,
         * but only the jpeg part; filesize() would be wrong */
        struct bufopen_bitmap_data *aa = (struct bufopen_bitmap_data*)user_data;
        if (aa->embedded_albumart)
            size = aa->embedded_albumart->size;
    }
#endif
    if (size == 0)
        size = filesize(fd);
    bool can_wrap = type==TYPE_PACKET_AUDIO || type==TYPE_CODEC;

    size_t adjusted_offset = offset;
    if (adjusted_offset > size)
        adjusted_offset = 0;

    /* Reserve extra space because alignment can move data forward */
    size_t padded_size = STORAGE_PAD(size-adjusted_offset);

    mutex_lock(&llist_mutex);

    struct memory_handle *h = add_handle(padded_size, can_wrap, false);
    if (!h) {
        DEBUGF("%s(): failed to add handle\n", __func__);
        mutex_unlock(&llist_mutex);
        close(fd);
        return ERR_BUFFER_FULL;
    }

    handle_id = h->id;
    strlcpy(h->path, file, MAX_PATH);
    h->offset = adjusted_offset;

#ifdef STORAGE_WANTS_ALIGN
    /* Don't bother to storage align bitmaps because they are not
     * loaded directly into the buffer.
     */
    if (type != TYPE_BITMAP) {
        /* Align to desired storage alignment */
        size_t alignment_pad = STORAGE_OVERLAP(adjusted_offset -
                                               (size_t)(&buffer[buf_widx]));
        buf_widx = ringbuf_add(buf_widx, alignment_pad);
    }
#endif /* STORAGE_WANTS_ALIGN */

    h->fd   = -1;
    h->data = buf_widx;
    h->ridx = buf_widx;
    h->widx = buf_widx;
    h->available = 0;
    h->type = type;

#ifdef HAVE_ALBUMART
    if (type == TYPE_BITMAP) {
        /* Bitmap file: we load the data instead of the file */
        int rc;
        rc = load_image(fd, file, (struct bufopen_bitmap_data*)user_data);
        if (rc <= 0) {
            rm_handle(h);
            handle_id = ERR_FILE_ERROR;
        } else {
            h->filesize = rc;
            h->available = rc;
            h->widx = buf_widx + rc; /* safe because the data doesn't wrap */
            buf_widx += rc;  /* safe too */
        }
    }
    else
#endif
    {
        if (type == TYPE_CUESHEET)
            h->fd = fd;

        h->filesize = size;
        h->available = 0;
        h->widx = buf_widx;
        h->filerem = size - adjusted_offset;
    }

    mutex_unlock(&llist_mutex);

    if (type == TYPE_CUESHEET) {
        /* Immediately start buffering those */
        LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", handle_id);
        queue_send(&buffering_queue, Q_BUFFER_HANDLE, handle_id);
    } else {
        /* Other types will get buffered in the course of normal operations */
        close(fd);

        if (handle_id >= 0) {
            /* Inform the buffering thread that we added a handle */
            LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", handle_id);
            queue_post(&buffering_queue, Q_HANDLE_ADDED, handle_id);
        }
    }

    logf("bufopen: new hdl %d", handle_id);
    return handle_id;
}

/* Open a new handle from data that needs to be copied from memory.
   src is the source buffer from which to copy data. It can be NULL to simply
   reserve buffer space.
   size is the requested size. The call will only be successful if the
   requested amount of data can entirely fit in the buffer without wrapping.
   Return value is the handle id for success or <0 for failure.
*/
int bufalloc(const void *src, size_t size, enum data_type type)
{
    int handle_id = ERR_BUFFER_FULL;

    mutex_lock(&llist_mutex);

    struct memory_handle *h = add_handle(size, false, true);

    if (h) {
        handle_id = h->id;

        if (src) {
            if (type == TYPE_ID3 && size == sizeof(struct mp3entry)) {
                /* specially take care of struct mp3entry */
                copy_mp3entry((struct mp3entry *)&buffer[buf_widx],
                              (const struct mp3entry *)src);
            } else {
                memcpy(&buffer[buf_widx], src, size);
            }
        }
        
        h->fd = -1;
        *h->path = 0;
        h->filesize = size;
        h->offset = 0;
        h->ridx = buf_widx;
        h->widx = buf_widx + size; /* safe because the data doesn't wrap */
        h->data = buf_widx;
        h->available = size;
        h->type = type;

        buf_widx += size;  /* safe too */
    }

    mutex_unlock(&llist_mutex);

    logf("bufalloc: new hdl %d", handle_id);
    return handle_id;
}

/* Close the handle. Return true for success and false for failure */
bool bufclose(int handle_id)
{
    logf("bufclose(%d)", handle_id);

    LOGFQUEUE("buffering >| Q_CLOSE_HANDLE %d", handle_id);
    return queue_send(&buffering_queue, Q_CLOSE_HANDLE, handle_id);
}

/* Backend to bufseek and bufadvance. Call only in response to
   Q_REBUFFER_HANDLE! */
static void rebuffer_handle(int handle_id, size_t newpos)
{
    struct memory_handle *h = find_handle(handle_id);

    if (!h) {
        queue_reply(&buffering_queue, ERR_HANDLE_NOT_FOUND);
        return;
    }

    /* When seeking foward off of the buffer, if it is a short seek attempt to
       avoid rebuffering the whole track, just read enough to satisfy */
    if (newpos > h->offset &&
        newpos - h->offset < BUFFERING_DEFAULT_FILECHUNK) {

        size_t amount = newpos - h->offset;
        h->ridx = ringbuf_add(h->data, amount);

        if (buffer_handle(handle_id, amount + 1)) {
            queue_reply(&buffering_queue, 0);
            buffer_handle(handle_id, 0); /* Ok, try the rest */
            return;
        }
        /* Data collision - must reset */
    }

    /* Reset the handle to its new position */
    h->offset = newpos;

    size_t next = h->next ? ringbuf_offset(h->next) : buf_ridx;

#ifdef STORAGE_WANTS_ALIGN
    /* Strip alignment padding then redo */
    size_t new_index = ringbuf_add(ringbuf_offset(h), sizeof (*h));

    /* Align to desired storage alignment if space permits - handle could
       have been shrunken too close to the following one after a previous
       rebuffer. */
    size_t alignment_pad =
        STORAGE_OVERLAP(h->offset - (size_t)(&buffer[new_index]));

    if (ringbuf_add_cross(new_index, alignment_pad, next) >= 0)
        alignment_pad = 0; /* Forego storage alignment this time */

    new_index = ringbuf_add(new_index, alignment_pad);
#else
    /* Just clear the data buffer */
    size_t new_index = h->data;
#endif /* STORAGE_WANTS_ALIGN */

    h->ridx = h->widx = h->data = new_index;

    if (h == cur_handle)
        buf_widx = new_index;

    h->available = 0;
    h->filerem = h->filesize - h->offset;

    if (h->fd >= 0)
        lseek(h->fd, h->offset, SEEK_SET);

    if (h->next && ringbuf_sub(next, h->data) <= h->filesize - newpos) {
        /* There isn't enough space to rebuffer all of the track from its new
           offset, so we ask the user to free some */
        DEBUGF("%s(): space is needed\n", __func__);
        int hid = handle_id;
        send_event(BUFFER_EVENT_REBUFFER, &hid);
    }

    /* Now we do the rebuffer */
    queue_reply(&buffering_queue, 0);
    buffer_handle(handle_id, 0);
}

/* Backend to bufseek and bufadvance */
static int seek_handle(struct memory_handle *h, size_t newpos)
{
    if (newpos > h->filesize) {
        /* access beyond the end of the file */
        return ERR_INVALID_VALUE;
    }
    else if ((newpos < h->offset || h->offset + h->available <= newpos) &&
             (newpos < h->filesize || h->filerem > 0)) {
        /* access before or after buffered data and not to end of file or file
           is not buffered to the end-- a rebuffer is needed. */
        struct buf_message_data parm = { h->id, newpos };
        return queue_send(&buffering_queue, Q_REBUFFER_HANDLE,
                          (intptr_t)&parm);
    }
    else {
        h->ridx = ringbuf_add(h->data, newpos - h->offset);
    }

    return 0;
}

/* Set reading index in handle (relatively to the start of the file).
   Access before the available data will trigger a rebuffer.
   Return 0 for success and < 0 for failure:
     -1 if the handle wasn't found
     -2 if the new requested position was beyond the end of the file
*/
int bufseek(int handle_id, size_t newpos)
{
    struct memory_handle *h = find_handle(handle_id);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    return seek_handle(h, newpos);
}

/* Advance the reading index in a handle (relatively to its current position).
   Return 0 for success and < 0 for failure */
int bufadvance(int handle_id, off_t offset)
{
    struct memory_handle *h = find_handle(handle_id);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    size_t newpos = h->offset + ringbuf_sub(h->ridx, h->data) + offset;
    return seek_handle(h, newpos);
}

/* Used by bufread and bufgetdata to prepare the buffer and retrieve the
 * actual amount of data available for reading.  This function explicitly
 * does not check the validity of the input handle.  It does do range checks
 * on size and returns a valid (and explicit) amount of data for reading */
static size_t handle_size_available(const struct memory_handle *h)
{
    /* Obtain proper distances from data start */
    size_t rd = ringbuf_sub(h->ridx, h->data);
    size_t wr = ringbuf_sub(h->widx, h->data);

    if (LIKELY(wr > rd))
        return wr - rd;

    return 0; /* ridx is ahead of or equal to widx at this time */
}

static struct memory_handle *prep_bufdata(int handle_id, size_t *size,
                                          bool guardbuf_limit)
{
    struct memory_handle *h = find_handle(handle_id);
    size_t realsize;

    if (!h)
        return NULL;

    size_t avail = handle_size_available(h);

    if (avail == 0 && h->filerem == 0) {
        /* File is finished reading */
        *size = 0;
        return h;
    }

    realsize = *size;

    if (realsize == 0 || realsize > avail + h->filerem)
        realsize = avail + h->filerem;

    if (guardbuf_limit && h->type == TYPE_PACKET_AUDIO
            && realsize > GUARD_BUFSIZE) {
        logf("data request > guardbuf");
        /* If more than the size of the guardbuf is requested and this is a
         * bufgetdata, limit to guard_bufsize over the end of the buffer */
        realsize = MIN(realsize, buffer_len - h->ridx + GUARD_BUFSIZE);
        /* this ensures *size <= buffer_len - h->ridx + GUARD_BUFSIZE */
    }

    if (h->filerem > 0 && avail < realsize) {
        /* Data isn't ready. Request buffering */
        buf_request_buffer_handle(handle_id);
        /* Wait for the data to be ready */
        do
        {
            sleep(0);
            /* it is not safe for a non-buffering thread to sleep while
             * holding a handle */
            h = find_handle(handle_id);
            if (!h)
                return NULL;
            avail = handle_size_available(h);
        }
        while (h->filerem > 0 && avail < realsize);
    }

    *size = MIN(realsize, avail);
    return h;
}


/* Note: It is safe for the thread responsible for handling the rebuffer
 * cleanup request to call bufread or bufgetdata only when the data will
 * be available-- not if it could be blocked waiting for it in prep_bufdata.
 * It should be apparent that if said thread is being forced to wait for
 * buffering but has not yet responded to the cleanup request, the space
 * can never be cleared to allow further reading of the file because it is
 * not listening to callbacks any longer. */

/* Copy data from the given handle to the dest buffer.
   Return the number of bytes copied or < 0 for failure (handle not found).
   The caller is blocked until the requested amount of data is available.
*/
ssize_t bufread(int handle_id, size_t size, void *dest)
{
    const struct memory_handle *h;
    size_t adjusted_size = size;

    h = prep_bufdata(handle_id, &adjusted_size, false);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    if (h->ridx + adjusted_size > buffer_len) {
        /* the data wraps around the end of the buffer */
        size_t read = buffer_len - h->ridx;
        memcpy(dest, &buffer[h->ridx], read);
        memcpy(dest+read, buffer, adjusted_size - read);
    } else {
        memcpy(dest, &buffer[h->ridx], adjusted_size);
    }

    return adjusted_size;
}

/* Update the "data" pointer to make the handle's data available to the caller.
   Return the length of the available linear data or < 0 for failure (handle
   not found).
   The caller is blocked until the requested amount of data is available.
   size is the amount of linear data requested. it can be 0 to get as
   much as possible.
   The guard buffer may be used to provide the requested size. This means it's
   unsafe to request more than the size of the guard buffer.
*/
ssize_t bufgetdata(int handle_id, size_t size, void **data)
{
    const struct memory_handle *h;
    size_t adjusted_size = size;

    h = prep_bufdata(handle_id, &adjusted_size, true);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    if (h->ridx + adjusted_size > buffer_len) {
        /* the data wraps around the end of the buffer :
           use the guard buffer to provide the requested amount of data. */
        size_t copy_n = h->ridx + adjusted_size - buffer_len;
        /* prep_bufdata ensures
           adjusted_size <= buffer_len - h->ridx + GUARD_BUFSIZE,
           so copy_n <= GUARD_BUFSIZE */
        memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
    }

    if (data)
        *data = &buffer[h->ridx];

    return adjusted_size;
}

ssize_t bufgettail(int handle_id, size_t size, void **data)
{
    size_t tidx;

    const struct memory_handle *h;

    h = find_handle(handle_id);

    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    if (h->filerem)
        return ERR_HANDLE_NOT_DONE;

    /* We don't support tail requests of > guardbuf_size, for simplicity */
    if (size > GUARD_BUFSIZE)
        return ERR_INVALID_VALUE;

    tidx = ringbuf_sub(h->widx, size);

    if (tidx + size > buffer_len) {
        size_t copy_n = tidx + size - buffer_len;
        memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
    }

    *data = &buffer[tidx];
    return size;
}

ssize_t bufcuttail(int handle_id, size_t size)
{
    struct memory_handle *h;
    size_t adjusted_size = size;

    h = find_handle(handle_id);

    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    if (h->filerem)
        return ERR_HANDLE_NOT_DONE;

    if (h->available < adjusted_size)
        adjusted_size = h->available;

    h->available -= adjusted_size;
    h->filesize -= adjusted_size;
    h->widx = ringbuf_sub(h->widx, adjusted_size);
    if (h == cur_handle)
        buf_widx = h->widx;

    return adjusted_size;
}


/*
SECONDARY EXPORTED FUNCTIONS
============================

buf_get_offset
buf_handle_offset
buf_request_buffer_handle
buf_set_base_handle
buf_used
register_buffering_callback
unregister_buffering_callback

These functions are exported, to allow interaction with the buffer.
They take care of the content of the structs, and rely on the linked list
management functions for all the actual handle management work.
*/

/* Get a handle offset from a pointer */
ssize_t buf_get_offset(int handle_id, void *ptr)
{
    const struct memory_handle *h = find_handle(handle_id);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;

    return (size_t)ptr - (size_t)&buffer[h->ridx];
}

ssize_t buf_handle_offset(int handle_id)
{
    const struct memory_handle *h = find_handle(handle_id);
    if (!h)
        return ERR_HANDLE_NOT_FOUND;
    return h->offset;
}

void buf_request_buffer_handle(int handle_id)
{
    LOGFQUEUE("buffering >| Q_START_FILL %d",handle_id);
    queue_send(&buffering_queue, Q_START_FILL, handle_id);
}

void buf_set_base_handle(int handle_id)
{
    LOGFQUEUE("buffering > Q_BASE_HANDLE %d", handle_id);
    queue_post(&buffering_queue, Q_BASE_HANDLE, handle_id);
}

/* Return the amount of buffer space used */
size_t buf_used(void)
{
    return BUF_USED;
}

void buf_set_watermark(size_t bytes)
{
    conf_watermark = bytes;
}

static void shrink_buffer_inner(struct memory_handle *h)
{
    if (h == NULL)
        return;

    shrink_buffer_inner(h->next);

    shrink_handle(h);
}

static void shrink_buffer(void)
{
    logf("shrink_buffer()");
    shrink_buffer_inner(first_handle);
}

void buffering_thread(void)
{
    bool filling = false;
    struct queue_event ev;
    struct buf_message_data *parm;

    while (true)
    {
        if (!filling) {
            cancel_cpu_boost();
        }

        queue_wait_w_tmo(&buffering_queue, &ev, filling ? 5 : HZ/2);

        switch (ev.id)
        {
            case Q_START_FILL:
                LOGFQUEUE("buffering < Q_START_FILL %d", (int)ev.data);
                /* Call buffer callbacks here because this is one of two ways
                 * to begin a full buffer fill */
                send_event(BUFFER_EVENT_BUFFER_LOW, 0);
                shrink_buffer();
                queue_reply(&buffering_queue, 1);
                filling |= buffer_handle((int)ev.data, 0);
                break;

            case Q_BUFFER_HANDLE:
                LOGFQUEUE("buffering < Q_BUFFER_HANDLE %d", (int)ev.data);
                queue_reply(&buffering_queue, 1);
                buffer_handle((int)ev.data, 0);
                break;

            case Q_REBUFFER_HANDLE:
                parm = (struct buf_message_data *)ev.data;
                LOGFQUEUE("buffering < Q_REBUFFER_HANDLE %d %ld",
                          parm->handle_id, parm->data);
                rebuffer_handle(parm->handle_id, parm->data);
                break;

            case Q_CLOSE_HANDLE:
                LOGFQUEUE("buffering < Q_CLOSE_HANDLE %d", (int)ev.data);
                queue_reply(&buffering_queue, close_handle((int)ev.data));
                break;

            case Q_HANDLE_ADDED:
                LOGFQUEUE("buffering < Q_HANDLE_ADDED %d", (int)ev.data);
                /* A handle was added: the disk is spinning, so we can fill */
                filling = true;
                break;

            case Q_BASE_HANDLE:
                LOGFQUEUE("buffering < Q_BASE_HANDLE %d", (int)ev.data);
                base_handle_id = (int)ev.data;
                break;

#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
            case SYS_USB_CONNECTED:
                LOGFQUEUE("buffering < SYS_USB_CONNECTED");
                usb_acknowledge(SYS_USB_CONNECTED_ACK);
                usb_wait_for_disconnect(&buffering_queue);
                break;
#endif

            case SYS_TIMEOUT:
                LOGFQUEUE_SYS_TIMEOUT("buffering < SYS_TIMEOUT");
                break;
        }

        update_data_counters(NULL);

        /* If the buffer is low, call the callbacks to get new data */
        if (num_handles > 0 && data_counters.useful <= conf_watermark)
            send_event(BUFFER_EVENT_BUFFER_LOW, 0);

#if 0
        /* TODO: This needs to be fixed to use the idle callback, disable it
         * for simplicity until its done right */
#if MEMORYSIZE > 8
        /* If the disk is spinning, take advantage by filling the buffer */
        else if (storage_disk_is_active() && queue_empty(&buffering_queue)) {
            if (num_handles > 0 && data_counters.useful <= high_watermark)
                send_event(BUFFER_EVENT_BUFFER_LOW, 0);

            if (data_counters.remaining > 0 && BUF_USED <= high_watermark) {
                /* This is a new fill, shrink the buffer up first */
                if (!filling)
                    shrink_buffer();
                filling = fill_buffer();
                update_data_counters(NULL);
            }
        }
#endif
#endif

        if (queue_empty(&buffering_queue)) {
            if (filling) {
                if (data_counters.remaining > 0 && BUF_USED < buffer_len)
                    filling = fill_buffer();
                else if (data_counters.remaining == 0)
                    filling = false;
            } else if (ev.id == SYS_TIMEOUT) {
                if (data_counters.remaining > 0 &&
                    data_counters.useful <= conf_watermark) {
                    shrink_buffer();
                    filling = fill_buffer();
                }
            }
        }
    }
}

void buffering_init(void)
{
    mutex_init(&llist_mutex);

    conf_watermark = BUFFERING_DEFAULT_WATERMARK;

    queue_init(&buffering_queue, true);
    buffering_thread_id = create_thread( buffering_thread, buffering_stack,
            sizeof(buffering_stack), CREATE_THREAD_FROZEN,
            buffering_thread_name IF_PRIO(, PRIORITY_BUFFERING)
            IF_COP(, CPU));

    queue_enable_queue_send(&buffering_queue, &buffering_queue_sender_list,
                            buffering_thread_id);
}

/* Initialise the buffering subsystem */
bool buffering_reset(char *buf, size_t buflen)
{
    /* Wraps of storage-aligned data must also be storage aligned,
       thus buf and buflen must be a aligned to an integer multiple of
       the storage alignment */
    STORAGE_ALIGN_BUFFER(buf, buflen);

    if (!buf || !buflen)
        return false;

    buffer = buf;
    buffer_len = buflen;
    guard_buffer = buf + buflen;

    buf_widx = 0;
    buf_ridx = 0;

    first_handle = NULL;
    cur_handle = NULL;
    cached_handle = NULL;
    num_handles = 0;
    base_handle_id = -1;

    /* Set the high watermark as 75% full...or 25% empty :) */
#if MEMORYSIZE > 8
    high_watermark = 3*buflen / 4;
#endif

    thread_thaw(buffering_thread_id);

    return true;
}

void buffering_get_debugdata(struct buffering_debug *dbgdata)
{
    struct data_counters dc;
    update_data_counters(&dc);
    dbgdata->num_handles = num_handles;
    dbgdata->data_rem = dc.remaining;
    dbgdata->wasted_space = dc.wasted;
    dbgdata->buffered_data = dc.buffered;
    dbgdata->useful_data = dc.useful;
    dbgdata->watermark = conf_watermark;
}