summaryrefslogtreecommitdiffstats
path: root/apps/codecs/libmusepack/mpc_decoder.c
blob: ee98722a05b0a87c5f4e7ca09228abb047ec85a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
/*
  Copyright (c) 2005, The Musepack Development Team
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are
  met:

  * Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the following
  disclaimer in the documentation and/or other materials provided
  with the distribution.

  * Neither the name of the The Musepack Development Team nor the
  names of its contributors may be used to endorse or promote
  products derived from this software without specific prior
  written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/// \file mpc_decoder.c
/// Core decoding routines and logic.

#include "musepack.h"
#include "internal.h"
#include "requant.h"
#include "huffman.h"

//SV7 tables
extern const HuffmanTyp*   mpc_table_HuffQ [2] [8];
extern const HuffmanTyp    mpc_table_HuffHdr  [10];
extern const HuffmanTyp    mpc_table_HuffSCFI [ 4];
extern const HuffmanTyp    mpc_table_HuffDSCF [16];


#ifdef MPC_SUPPORT_SV456
//SV4/5/6 tables
extern const HuffmanTyp*   mpc_table_SampleHuff [18];
extern const HuffmanTyp    mpc_table_SCFI_Bundle   [ 8];
extern const HuffmanTyp    mpc_table_DSCF_Entropie [13];
extern const HuffmanTyp    mpc_table_Region_A [16];
extern const HuffmanTyp    mpc_table_Region_B [ 8];
extern const HuffmanTyp    mpc_table_Region_C [ 4];

#endif

//------------------------------------------------------------------------------
// types
//------------------------------------------------------------------------------
enum
    {
        EQ_TAP = 13,                        // length of FIR filter for EQ
        DELAY = ((EQ_TAP + 1) / 2),         // delay of FIR
        FIR_BANDS = 4,                      // number of subbands to be FIR filtered
        MEMSIZE = MPC_DECODER_MEMSIZE,      // overall buffer size
        MEMSIZE2 = (MEMSIZE/2),             // size of one buffer
        MEMMASK = (MEMSIZE-1)
    };

//------------------------------------------------------------------------------
// forward declarations
//------------------------------------------------------------------------------
void mpc_decoder_read_bitstream_sv6(mpc_decoder *d);
void mpc_decoder_read_bitstream_sv7(mpc_decoder *d);
void mpc_decoder_update_buffer(mpc_decoder *d, mpc_uint32_t RING);
mpc_bool_t mpc_decoder_seek_sample(mpc_decoder *d, mpc_int64_t destsample);
void mpc_decoder_requantisierung(mpc_decoder *d, const mpc_int32_t Last_Band);

//------------------------------------------------------------------------------
// utility functions
//------------------------------------------------------------------------------
static mpc_int32_t f_read(mpc_decoder *d, void *ptr, size_t size) 
{ 
    return d->r->read(d->r->data, ptr, size); 
};

static mpc_bool_t f_seek(mpc_decoder *d, mpc_int32_t offset) 
{ 
    return d->r->seek(d->r->data, offset); 
};

static mpc_int32_t f_read_dword(mpc_decoder *d, mpc_uint32_t * ptr, mpc_uint32_t count) 
{
    count = f_read(d, ptr, count << 2) >> 2;
#ifndef MPC_LITTLE_ENDIAN
    mpc_uint32_t n;
    for(n = 0; n< count; n++) {
        ptr[n] = mpc_swap32(ptr[n]);
    }
#endif
    return count;
}

//------------------------------------------------------------------------------
// huffman & bitstream functions
//------------------------------------------------------------------------------
static const mpc_uint32_t mask [33] = {
    0x00000000, 0x00000001, 0x00000003, 0x00000007,
    0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
    0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
    0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
    0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
    0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
    0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
    0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF,
    0xFFFFFFFF
};

/* F U N C T I O N S */

// resets bitstream decoding
static void
mpc_decoder_reset_bitstream_decode(mpc_decoder *d) 
{
    d->dword = 0;
    d->pos = 0;
    d->Zaehler = 0;
    d->WordsRead = 0;
}

// reports the number of read bits
static mpc_uint32_t
mpc_decoder_bits_read(mpc_decoder *d) 
{
    return 32 * d->WordsRead + d->pos;
}

// read desired number of bits out of the bitstream
static mpc_uint32_t
mpc_decoder_bitstream_read(mpc_decoder *d, const mpc_uint32_t bits) 
{
    mpc_uint32_t out = d->dword;

    d->pos += bits;

    if (d->pos < 32) {
        out >>= (32 - d->pos);
    }
    else {
        d->dword = d->Speicher[d->Zaehler = (d->Zaehler + 1) & MEMMASK];
        d->pos -= 32;
        if (d->pos) {
            out <<= d->pos;
            out |= d->dword >> (32 - d->pos);
        }
        ++(d->WordsRead);
    }

    return out & mask[bits];
}

// decode SCFI-bundle (sv4,5,6)
static void
mpc_decoder_scfi_bundle_read(
    mpc_decoder *d,
    const HuffmanTyp* Table, mpc_int32_t* SCFI, mpc_bool_t* DSCF) 
{
    // load preview and decode
    mpc_uint32_t code  = d->dword << d->pos;
    if (d->pos > 26) {
        code |= d->Speicher[(d->Zaehler + 1) & MEMMASK] >> (32 - d->pos);
    }
    while (code < Table->Code) {
        Table++;
    }

    // set the new position within bitstream without performing a dummy-read
    if ((d->pos += Table->Length) >= 32) {
        d->pos -= 32;
        d->dword = d->Speicher[d->Zaehler = (d->Zaehler+1) & MEMMASK];
        ++(d->WordsRead);
    }

    *SCFI = Table->Value >> 1;
    *DSCF = Table->Value &  1;
}

// basic huffman decoding routine
// works with maximum lengths up to 14
static mpc_int32_t
mpc_decoder_huffman_decode(mpc_decoder *d, const HuffmanTyp *Table) 
{
    // load preview and decode
    mpc_uint32_t code = d->dword << d->pos;
    if (d->pos > 18) {
        code |= d->Speicher[(d->Zaehler + 1) & MEMMASK] >> (32 - d->pos);
    }
    while (code < Table->Code) {
        Table++;
    }

    // set the new position within bitstream without performing a dummy-read
    if ((d->pos += Table->Length) >= 32) {
        d->pos -= 32;
        d->dword = d->Speicher[d->Zaehler = (d->Zaehler + 1) & MEMMASK];
        ++(d->WordsRead);
    }

    return Table->Value;
}

// faster huffman through previewing less bits
// works with maximum lengths up to 10
static mpc_int32_t
mpc_decoder_huffman_decode_fast(mpc_decoder *d, const HuffmanTyp* Table)
{
    // load preview and decode
    mpc_uint32_t code  = d->dword << d->pos;
    if (d->pos > 22) {
        code |= d->Speicher[(d->Zaehler + 1) & MEMMASK] >> (32 - d->pos);
    }
    while (code < Table->Code) {
        Table++;
    }

    // set the new position within bitstream without performing a dummy-read
    if ((d->pos += Table->Length) >= 32) {
        d->pos -= 32;
        d->dword = d->Speicher[d->Zaehler = (d->Zaehler + 1) & MEMMASK];
        ++(d->WordsRead);
    }

    return Table->Value;
}

// even faster huffman through previewing even less bits
// works with maximum lengths up to 5
static mpc_int32_t
mpc_decoder_huffman_decode_faster(mpc_decoder *d, const HuffmanTyp* Table)
{
    // load preview and decode
    mpc_uint32_t code  = d->dword << d->pos;
    if (d->pos > 27) {
        code |= d->Speicher[(d->Zaehler + 1) & MEMMASK] >> (32 - d->pos);
    }
    while (code < Table->Code) {
        Table++;
    }

    // set the new position within bitstream without performing a dummy-read
    if ((d->pos += Table->Length) >= 32) {
        d->pos -= 32;
        d->dword = d->Speicher[d->Zaehler = (d->Zaehler + 1) & MEMMASK];
        ++(d->WordsRead);
    }

    return Table->Value;
}

MPC_SAMPLE_FORMAT V_L[MPC_V_MEM + 960] IBSS_ATTR;
MPC_SAMPLE_FORMAT V_R[MPC_V_MEM + 960] IBSS_ATTR;

static void
mpc_decoder_reset_v(mpc_decoder *d) 
{
    /* since d->V_L and d->V_R are now pointers, sizeof (d->V_x) will no longer work */
    memset(d->V_L, 0, sizeof V_L);
    memset(d->V_R, 0, sizeof V_R);
}

static void
mpc_decoder_reset_synthesis(mpc_decoder *d) 
{
    mpc_decoder_reset_v(d);
}

static void
mpc_decoder_reset_y(mpc_decoder *d) 
{
    memset(d->Y_L, 0, sizeof d->Y_L);
    memset(d->Y_R, 0, sizeof d->Y_R);
}

static void
mpc_decoder_reset_globals(mpc_decoder *d) 
{
    mpc_decoder_reset_bitstream_decode(d);

    d->DecodedFrames  = 0;
    d->StreamVersion  = 0;
    d->MS_used        = 0;

    memset(d->Y_L          , 0, sizeof d->Y_L           );
    memset(d->Y_R          , 0, sizeof d->Y_R           );
    memset(d->SCF_Index_L     , 0, sizeof d->SCF_Index_L      );
    memset(d->SCF_Index_R     , 0, sizeof d->SCF_Index_R      );
    memset(d->Res_L           , 0, sizeof d->Res_L            );
    memset(d->Res_R           , 0, sizeof d->Res_R            );
    memset(d->SCFI_L          , 0, sizeof d->SCFI_L           );
    memset(d->SCFI_R          , 0, sizeof d->SCFI_R           );
    memset(d->DSCF_Flag_L     , 0, sizeof d->DSCF_Flag_L      );
    memset(d->DSCF_Flag_R     , 0, sizeof d->DSCF_Flag_R      );
    memset(d->DSCF_Reference_L, 0, sizeof d->DSCF_Reference_L );
    memset(d->DSCF_Reference_R, 0, sizeof d->DSCF_Reference_R );
    memset(d->Q               , 0, sizeof d->Q                );
    memset(d->MS_Flag         , 0, sizeof d->MS_Flag          );
}

mpc_uint32_t
mpc_decoder_decode_frame(mpc_decoder *d, mpc_uint32_t *in_buffer,
                         mpc_uint32_t in_len, MPC_SAMPLE_FORMAT *out_buffer)
{
  unsigned int i;
  mpc_decoder_reset_bitstream_decode(d);
  if (in_len > sizeof(d->Speicher)) in_len = sizeof(d->Speicher);
  memcpy(d->Speicher, in_buffer, in_len);
#ifdef MPC_LITTLE_ENDIAN
  for (i = 0; i < (in_len + 3) / 4; i++)
    d->Speicher[i] = mpc_swap32(d->Speicher[i]);
#endif
  (void)i; /* avoid warning */
  d->dword = d->Speicher[0];
  switch (d->StreamVersion) {
#ifdef MPC_SUPPORT_SV456
    case 0x04:
    case 0x05:
    case 0x06:
        mpc_decoder_read_bitstream_sv6(d);
        break;
#endif
    case 0x07:
    case 0x17:
        mpc_decoder_read_bitstream_sv7(d);
        break;
    default:
        return (mpc_uint32_t)(-1);
  }
  mpc_decoder_requantisierung(d, d->Max_Band);
  mpc_decoder_synthese_filter_float(d, out_buffer);
  return mpc_decoder_bits_read(d);
}

static mpc_uint32_t
mpc_decoder_decode_internal(mpc_decoder *d, MPC_SAMPLE_FORMAT *buffer) 
{
    mpc_uint32_t output_frame_length = MPC_FRAME_LENGTH;

    mpc_uint32_t  FrameBitCnt = 0;

    // output the last part of the last frame here, if needed
    if (d->last_block_samples > 0) {
        output_frame_length = d->last_block_samples;
        d->last_block_samples = 0; // it's going to be handled now, so reset it 
        if (!d->TrueGaplessPresent) {
            mpc_decoder_reset_y(d);
        } else {
            mpc_decoder_bitstream_read(d, 20);
            mpc_decoder_read_bitstream_sv7(d);
            mpc_decoder_requantisierung(d, d->Max_Band);
        }
        mpc_decoder_synthese_filter_float(d, buffer);
        return output_frame_length;
    }
    
    if (d->DecodedFrames >= d->OverallFrames) {
        return (mpc_uint32_t)(-1);                           // end of file -> abort decoding
    }

    // read jump-info for validity check of frame
    d->FwdJumpInfo  = mpc_decoder_bitstream_read(d, 20);

    d->ActDecodePos = (d->Zaehler << 5) + d->pos;

    // decode data and check for validity of frame
    FrameBitCnt = mpc_decoder_bits_read(d);
    switch (d->StreamVersion) {
#ifdef MPC_SUPPORT_SV456
    case 0x04:
    case 0x05:
    case 0x06:
        mpc_decoder_read_bitstream_sv6(d);
        break;
#endif
    case 0x07:
    case 0x17:
        mpc_decoder_read_bitstream_sv7(d);
        break;
    default:
        return (mpc_uint32_t)(-1);
    }
    d->FrameWasValid = mpc_decoder_bits_read(d) - FrameBitCnt == d->FwdJumpInfo;

    // synthesize signal
    mpc_decoder_requantisierung(d, d->Max_Band);

    //if ( d->EQ_activated && PluginSettings.EQbyMPC )
    //    perform_EQ ();

    mpc_decoder_synthese_filter_float(d, buffer);

    d->DecodedFrames++;

    // cut off first MPC_DECODER_SYNTH_DELAY zero-samples
    if (d->DecodedFrames == d->OverallFrames  && d->StreamVersion >= 6) {        
        // reconstruct exact filelength
        mpc_int32_t  mod_block   = mpc_decoder_bitstream_read(d,  11);
        mpc_int32_t  FilterDecay;

        if (mod_block == 0) {
            // Encoder bugfix
            mod_block = 1152;                    
        }
        FilterDecay = (mod_block + MPC_DECODER_SYNTH_DELAY) % MPC_FRAME_LENGTH;

        // additional FilterDecay samples are needed for decay of synthesis filter
        if (MPC_DECODER_SYNTH_DELAY + mod_block >= MPC_FRAME_LENGTH) {
            // this variable will be checked for at the top of the function
            d->last_block_samples = FilterDecay;
        }
        else { // there are only FilterDecay samples needed for this frame
            output_frame_length = FilterDecay;
        }
    }

    if (d->samples_to_skip) {
        if (output_frame_length < d->samples_to_skip) {
            d->samples_to_skip -= output_frame_length;
            output_frame_length = 0;
        }
        else {
            output_frame_length -= d->samples_to_skip;
            memmove(
                buffer, 
                buffer + d->samples_to_skip * 2, 
                output_frame_length * 2 * sizeof (MPC_SAMPLE_FORMAT));
            d->samples_to_skip = 0;
        }
    }

    return output_frame_length;
}

mpc_uint32_t mpc_decoder_decode(
    mpc_decoder *d,
    MPC_SAMPLE_FORMAT *buffer, 
    mpc_uint32_t *vbr_update_acc, 
    mpc_uint32_t *vbr_update_bits)
{
    for(;;)
    {
        //const mpc_int32_t MaxBrokenFrames = 0; // PluginSettings.MaxBrokenFrames

        mpc_uint32_t RING = d->Zaehler;
        mpc_int32_t vbr_ring = (RING << 5) + d->pos;

        mpc_uint32_t valid_samples = mpc_decoder_decode_internal(d, buffer);

        if (valid_samples == (mpc_uint32_t)(-1) ) {
            return 0;
        }

        /**************** ERROR CONCEALMENT *****************/
        if (d->FrameWasValid == 0 ) {
            // error occurred in bitstream
            return (mpc_uint32_t)(-1);
        } 
        else {
            if (vbr_update_acc && vbr_update_bits) {
                (*vbr_update_acc) ++;
                vbr_ring = (d->Zaehler << 5) + d->pos - vbr_ring;
                if (vbr_ring < 0) {
                    vbr_ring += 524288;
                }
                (*vbr_update_bits) += vbr_ring;
            }

        }
        mpc_decoder_update_buffer(d, RING);

        if (valid_samples > 0) {
            return valid_samples;
        }
    }
}

void
mpc_decoder_requantisierung(mpc_decoder *d, const mpc_int32_t Last_Band) 
{
    mpc_int32_t     Band;
    mpc_int32_t     n;
    MPC_SAMPLE_FORMAT facL;
    MPC_SAMPLE_FORMAT facR;
    MPC_SAMPLE_FORMAT templ;
    MPC_SAMPLE_FORMAT tempr;
    MPC_SAMPLE_FORMAT* YL;
    MPC_SAMPLE_FORMAT* YR;
    mpc_int32_t*    L;
    mpc_int32_t*    R;

#ifdef MPC_FIXED_POINT
#if MPC_FIXED_POINT_FRACTPART == 14
#define MPC_MULTIPLY_SCF(CcVal, SCF_idx) \
    MPC_MULTIPLY_EX(CcVal, d->SCF[SCF_idx], d->SCF_shift[SCF_idx])
#else

#error FIXME, Cc table is in 18.14 format

#endif
#else
#define MPC_MULTIPLY_SCF(CcVal, SCF_idx) \
    MPC_MULTIPLY(CcVal, d->SCF[SCF_idx])
#endif
    // requantization and scaling of subband-samples
    for ( Band = 0; Band <= Last_Band; Band++ ) {   // setting pointers
        YL = d->Y_L[0] + Band;
        YR = d->Y_R[0] + Band;
        L  = d->Q[Band].L;
        R  = d->Q[Band].R;
        /************************** MS-coded **************************/
        if ( d->MS_Flag [Band] ) {
            if ( d->Res_L [Band] ) {
                if ( d->Res_R [Band] ) {    // M!=0, S!=0
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][0]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][0]);
                    for ( n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YL   = (templ = MPC_MULTIPLY_FLOAT_INT(facL,*L++))+(tempr = MPC_MULTIPLY_FLOAT_INT(facR,*R++));
                        *YR   = templ - tempr;
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][1]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][1]);
                    for ( ; n < 24; n++, YL += 32, YR += 32 ) {
                        *YL   = (templ = MPC_MULTIPLY_FLOAT_INT(facL,*L++))+(tempr = MPC_MULTIPLY_FLOAT_INT(facR,*R++));
                        *YR   = templ - tempr;
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][2]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][2]);
                    for ( ; n < 36; n++, YL += 32, YR += 32 ) {
                        *YL   = (templ = MPC_MULTIPLY_FLOAT_INT(facL,*L++))+(tempr = MPC_MULTIPLY_FLOAT_INT(facR,*R++));
                        *YR   = templ - tempr;
                    }
                } else {    // M!=0, S==0
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][0]);
                    for ( n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YR = *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][1]);
                    for ( ; n < 24; n++, YL += 32, YR += 32 ) {
                        *YR = *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][2]);
                    for ( ; n < 36; n++, YL += 32, YR += 32 ) {
                        *YR = *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                    }
                }
            } else {
                if (d->Res_R[Band])    // M==0, S!=0
                {
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][0]);
                    for ( n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YR = - (*YL = MPC_MULTIPLY_FLOAT_INT(facR,*(R++)));
                    }
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][1]);
                    for ( ; n < 24; n++, YL += 32, YR += 32 ) {
                        *YR = - (*YL = MPC_MULTIPLY_FLOAT_INT(facR,*(R++)));
                    }
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][2]);
                    for ( ; n < 36; n++, YL += 32, YR += 32 ) {
                        *YR = - (*YL = MPC_MULTIPLY_FLOAT_INT(facR,*(R++)));
                    }
                } else {    // M==0, S==0
                    for ( n = 0; n < 36; n++, YL += 32, YR += 32 ) {
                        *YR = *YL = 0;
                    }
                }
            }
        }
        /************************** LR-coded **************************/
        else {
            if ( d->Res_L [Band] ) {
                if ( d->Res_R [Band] ) {    // L!=0, R!=0
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][0]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][0]);
                    for (n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][1]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][1]);
                    for (; n < 24; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][2]);
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][2]);
                    for (; n < 36; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                } else {     // L!=0, R==0
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][0]);
                    for ( n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = 0;
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][1]);
                    for ( ; n < 24; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = 0;
                    }
                    facL = MPC_MULTIPLY_SCF( Cc[d->Res_L[Band]] , (unsigned char)d->SCF_Index_L[Band][2]);
                    for ( ; n < 36; n++, YL += 32, YR += 32 ) {
                        *YL = MPC_MULTIPLY_FLOAT_INT(facL,*L++);
                        *YR = 0;
                    }
                }
            }
            else {
                if ( d->Res_R [Band] ) {    // L==0, R!=0
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][0]);
                    for ( n = 0; n < 12; n++, YL += 32, YR += 32 ) {
                        *YL = 0;
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][1]);
                    for ( ; n < 24; n++, YL += 32, YR += 32 ) {
                        *YL = 0;
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                    facR = MPC_MULTIPLY_SCF( Cc[d->Res_R[Band]] , (unsigned char)d->SCF_Index_R[Band][2]);
                    for ( ; n < 36; n++, YL += 32, YR += 32 ) {
                        *YL = 0;
                        *YR = MPC_MULTIPLY_FLOAT_INT(facR,*R++);
                    }
                } else {    // L==0, R==0
                    for ( n = 0; n < 36; n++, YL += 32, YR += 32 ) {
                        *YR = *YL = 0;
                    }
                }
            }
        }
    }
}

#ifdef MPC_SUPPORT_SV456
static const unsigned char Q_res[32][16] = {
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,3,4,5,6,17,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,2,17,0,0,0,0,0,0,0,0,0,0,0,0},
};

/****************************************** SV 6 ******************************************/
void
mpc_decoder_read_bitstream_sv6(mpc_decoder *d) 
{
    mpc_int32_t n,k;
    mpc_int32_t Max_used_Band=0;
    const HuffmanTyp *Table;
    const HuffmanTyp *x1;
    const HuffmanTyp *x2;
    mpc_int32_t *L;
    mpc_int32_t *R;
    mpc_int32_t *ResL = d->Res_L;
    mpc_int32_t *ResR = d->Res_R;

    /************************ HEADER **************************/
    ResL = d->Res_L;
    ResR = d->Res_R;
    for (n=0; n <= d->Max_Band; ++n, ++ResL, ++ResR)
    {
        if      (n<11)           Table = mpc_table_Region_A;
        else if (n>=11 && n<=22) Table = mpc_table_Region_B;
        else /*if (n>=23)*/      Table = mpc_table_Region_C;

        *ResL = Q_res[n][mpc_decoder_huffman_decode(d, Table)];
        if (d->MS_used) {
            d->MS_Flag[n] = mpc_decoder_bitstream_read(d,  1);
        }
        *ResR = Q_res[n][mpc_decoder_huffman_decode(d, Table)];

        // only perform the following procedure up to the maximum non-zero subband
        if (*ResL || *ResR) Max_used_Band = n;
    }

    /************************* SCFI-Bundle *****************************/
    ResL = d->Res_L;
    ResR = d->Res_R;
    for (n=0; n<=Max_used_Band; ++n, ++ResL, ++ResR) {
        if (*ResL) mpc_decoder_scfi_bundle_read(d, mpc_table_SCFI_Bundle, &(d->SCFI_L[n]), &(d->DSCF_Flag_L[n]));
        if (*ResR) mpc_decoder_scfi_bundle_read(d, mpc_table_SCFI_Bundle, &(d->SCFI_R[n]), &(d->DSCF_Flag_R[n]));
    }

    /***************************** SCFI ********************************/
    ResL = d->Res_L;
    ResR = d->Res_R;
    L    = d->SCF_Index_L[0];
    R    = d->SCF_Index_R[0];
    for (n=0; n <= Max_used_Band; ++n, ++ResL, ++ResR, L+=3, R+=3)
    {
        if (*ResL)
        {
            /*********** DSCF ************/
            if (d->DSCF_Flag_L[n]==1)
            {
                L[2] = d->DSCF_Reference_L[n];
                switch (d->SCFI_L[n])
                {
                case 3:
                    L[0] = L[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[1] = L[0];
                    L[2] = L[1];
                    break;
                case 1:
                    L[0] = L[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[1] = L[0] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[2] = L[1];
                    break;
                case 2:
                    L[0] = L[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[1] = L[0];
                    L[2] = L[1] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    break;
                case 0:
                    L[0] = L[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[1] = L[0] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    L[2] = L[1] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    break;
                default:
                    return;
                    break;
                }
            }
            /************ SCF ************/
            else
            {
                switch (d->SCFI_L[n])
                {
                case 3:
                    L[0] = mpc_decoder_bitstream_read(d,  6);
                    L[1] = L[0];
                    L[2] = L[1];
                    break;
                case 1:
                    L[0] = mpc_decoder_bitstream_read(d,  6);
                    L[1] = mpc_decoder_bitstream_read(d,  6);
                    L[2] = L[1];
                    break;
                case 2:
                    L[0] = mpc_decoder_bitstream_read(d,  6);
                    L[1] = L[0];
                    L[2] = mpc_decoder_bitstream_read(d,  6);
                    break;
                case 0:
                    L[0] = mpc_decoder_bitstream_read(d,  6);
                    L[1] = mpc_decoder_bitstream_read(d,  6);
                    L[2] = mpc_decoder_bitstream_read(d,  6);
                    break;
                default:
                    return;
                    break;
                }
            }
            // update Reference for DSCF
            d->DSCF_Reference_L[n] = L[2];
        }
        if (*ResR)
        {
            R[2] = d->DSCF_Reference_R[n];
            /*********** DSCF ************/
            if (d->DSCF_Flag_R[n]==1)
            {
                switch (d->SCFI_R[n])
                {
                case 3:
                    R[0] = R[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[1] = R[0];
                    R[2] = R[1];
                    break;
                case 1:
                    R[0] = R[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[1] = R[0] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[2] = R[1];
                    break;
                case 2:
                    R[0] = R[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[1] = R[0];
                    R[2] = R[1] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    break;
                case 0:
                    R[0] = R[2] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[1] = R[0] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    R[2] = R[1] + mpc_decoder_huffman_decode_fast(d,  mpc_table_DSCF_Entropie);
                    break;
                default:
                    return;
                    break;
                }
            }
            /************ SCF ************/
            else
            {
                switch (d->SCFI_R[n])
                {
                case 3:
                    R[0] = mpc_decoder_bitstream_read(d, 6);
                    R[1] = R[0];
                    R[2] = R[1];
                    break;
                case 1:
                    R[0] = mpc_decoder_bitstream_read(d, 6);
                    R[1] = mpc_decoder_bitstream_read(d, 6);
                    R[2] = R[1];
                    break;
                case 2:
                    R[0] = mpc_decoder_bitstream_read(d, 6);
                    R[1] = R[0];
                    R[2] = mpc_decoder_bitstream_read(d, 6);
                    break;
                case 0:
                    R[0] = mpc_decoder_bitstream_read(d, 6);
                    R[1] = mpc_decoder_bitstream_read(d, 6);
                    R[2] = mpc_decoder_bitstream_read(d, 6);
                    break;
                default:
                    return;
                    break;
                }
            }
            // update Reference for DSCF
            d->DSCF_Reference_R[n] = R[2];
        }
    }

    /**************************** Samples ****************************/
    ResL = d->Res_L;
    ResR = d->Res_R;
    for (n=0; n <= Max_used_Band; ++n, ++ResL, ++ResR)
    {
        // setting pointers
        x1 = mpc_table_SampleHuff[*ResL];
        x2 = mpc_table_SampleHuff[*ResR];
        L = d->Q[n].L;
        R = d->Q[n].R;

        if (x1!=NULL || x2!=NULL)
            for (k=0; k<36; ++k)
            {
                if (x1 != NULL) *L++ = mpc_decoder_huffman_decode_fast(d,  x1);
                if (x2 != NULL) *R++ = mpc_decoder_huffman_decode_fast(d,  x2);
            }

        if (*ResL>7 || *ResR>7)
            for (k=0; k<36; ++k)
            {
                if (*ResL>7) *L++ = (mpc_int32_t)mpc_decoder_bitstream_read(d,  Res_bit[*ResL]) - Dc[*ResL];
                if (*ResR>7) *R++ = (mpc_int32_t)mpc_decoder_bitstream_read(d,  Res_bit[*ResR]) - Dc[*ResR];
            }
    }
}
#endif //MPC_SUPPORT_SV456
/****************************************** SV 7 ******************************************/
void
mpc_decoder_read_bitstream_sv7(mpc_decoder *d) 
{
    // these arrays hold decoding results for bundled quantizers (3- and 5-step)
    /*static*/ mpc_int32_t idx30[] = { -1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1,-1, 0, 1};
    /*static*/ mpc_int32_t idx31[] = { -1,-1,-1, 0, 0, 0, 1, 1, 1,-1,-1,-1, 0, 0, 0, 1, 1, 1,-1,-1,-1, 0, 0, 0, 1, 1, 1};
    /*static*/ mpc_int32_t idx32[] = { -1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    /*static*/ mpc_int32_t idx50[] = { -2,-1, 0, 1, 2,-2,-1, 0, 1, 2,-2,-1, 0, 1, 2,-2,-1, 0, 1, 2,-2,-1, 0, 1, 2};
    /*static*/ mpc_int32_t idx51[] = { -2,-2,-2,-2,-2,-1,-1,-1,-1,-1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2};

    mpc_int32_t n,k;
    mpc_int32_t Max_used_Band=0;
    const HuffmanTyp *Table;
    mpc_int32_t idx;
    mpc_int32_t *L   ,*R;
    mpc_int32_t *ResL,*ResR;
    mpc_uint32_t tmp;

    /***************************** Header *****************************/
    ResL  = d->Res_L;
    ResR  = d->Res_R;

    // first subband
    *ResL = mpc_decoder_bitstream_read(d, 4);
    *ResR = mpc_decoder_bitstream_read(d, 4);
    if (d->MS_used && !(*ResL==0 && *ResR==0)) {
        d->MS_Flag[0] = mpc_decoder_bitstream_read(d, 1);
    }

    // consecutive subbands
    ++ResL; ++ResR; // increase pointers
    for (n=1; n <= d->Max_Band; ++n, ++ResL, ++ResR)
    {
        idx   = mpc_decoder_huffman_decode_fast(d, mpc_table_HuffHdr);
        *ResL = (idx!=4) ? *(ResL-1) + idx : (int) mpc_decoder_bitstream_read(d, 4);

        idx   = mpc_decoder_huffman_decode_fast(d, mpc_table_HuffHdr);
        *ResR = (idx!=4) ? *(ResR-1) + idx : (int) mpc_decoder_bitstream_read(d, 4);

        if (d->MS_used && !(*ResL==0 && *ResR==0)) {
            d->MS_Flag[n] = mpc_decoder_bitstream_read(d, 1);
        }

        // only perform following procedures up to the maximum non-zero subband
        if (*ResL!=0 || *ResR!=0) {
            Max_used_Band = n;
        }
    }
    /****************************** SCFI ******************************/
    L     = d->SCFI_L;
    R     = d->SCFI_R;
    ResL  = d->Res_L;
    ResR  = d->Res_R;
    for (n=0; n <= Max_used_Band; ++n, ++L, ++R, ++ResL, ++ResR) {
        if (*ResL) *L = mpc_decoder_huffman_decode_faster(d, mpc_table_HuffSCFI);
        if (*ResR) *R = mpc_decoder_huffman_decode_faster(d, mpc_table_HuffSCFI);
    }

    /**************************** SCF/DSCF ****************************/
    ResL  = d->Res_L;
    ResR  = d->Res_R;
    L     = d->SCF_Index_L[0];
    R     = d->SCF_Index_R[0];
    for (n=0; n<=Max_used_Band; ++n, ++ResL, ++ResR, L+=3, R+=3) {
        if (*ResL)
        {
            L[2] = d->DSCF_Reference_L[n];
            switch (d->SCFI_L[n])
            {
            case 1:
                idx  = mpc_decoder_huffman_decode_fast(d, mpc_table_HuffDSCF);
                L[0] = (idx!=8) ? L[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d, mpc_table_HuffDSCF);
                L[1] = (idx!=8) ? L[0] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                L[2] = L[1];
                break;
            case 3:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[0] = (idx!=8) ? L[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                L[1] = L[0];
                L[2] = L[1];
                break;
            case 2:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[0] = (idx!=8) ? L[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                L[1] = L[0];
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[2] = (idx!=8) ? L[1] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                break;
            case 0:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[0] = (idx!=8) ? L[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[1] = (idx!=8) ? L[0] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                L[2] = (idx!=8) ? L[1] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                break;
            default:
                return;
                break;
            }
            // update Reference for DSCF
            d->DSCF_Reference_L[n] = L[2];
        }
        if (*ResR)
        {
            R[2] = d->DSCF_Reference_R[n];
            switch (d->SCFI_R[n])
            {
            case 1:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[0] = (idx!=8) ? R[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[1] = (idx!=8) ? R[0] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                R[2] = R[1];
                break;
            case 3:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[0] = (idx!=8) ? R[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                R[1] = R[0];
                R[2] = R[1];
                break;
            case 2:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[0] = (idx!=8) ? R[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                R[1] = R[0];
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[2] = (idx!=8) ? R[1] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                break;
            case 0:
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[0] = (idx!=8) ? R[2] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[1] = (idx!=8) ? R[0] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                idx  = mpc_decoder_huffman_decode_fast(d,  mpc_table_HuffDSCF);
                R[2] = (idx!=8) ? R[1] + idx : (int) mpc_decoder_bitstream_read(d, 6);
                break;
            default:
                return;
                break;
            }
            // update Reference for DSCF
            d->DSCF_Reference_R[n] = R[2];
        }
    }
    /***************************** Samples ****************************/
    ResL = d->Res_L;
    ResR = d->Res_R;
    L    = d->Q[0].L;
    R    = d->Q[0].R;
    for (n=0; n <= Max_used_Band; ++n, ++ResL, ++ResR, L+=36, R+=36)
    {
        /************** links **************/
        switch (*ResL)
        {
        case  -2: case  -3: case  -4: case  -5: case  -6: case  -7: case  -8: case  -9:
        case -10: case -11: case -12: case -13: case -14: case -15: case -16: case -17:
            L += 36;
            break;
        case -1:
            for (k=0; k<36; k++ ) {
                tmp  = mpc_random_int(d);
                *L++ = ((tmp >> 24) & 0xFF) + ((tmp >> 16) & 0xFF) + ((tmp >>  8) & 0xFF) + ((tmp >>  0) & 0xFF) - 510;
            }
            break;
        case 0:
            L += 36;// increase pointer
            break;
        case 1:
            Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][1];
            for (k=0; k<12; ++k)
            {
                idx = mpc_decoder_huffman_decode_fast(d,  Table);
                *L++ = idx30[idx];
                *L++ = idx31[idx];
                *L++ = idx32[idx];
            }
            break;
        case 2:
            Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][2];
            for (k=0; k<18; ++k)
            {
                idx = mpc_decoder_huffman_decode_fast(d,  Table);
                *L++ = idx50[idx];
                *L++ = idx51[idx];
            }
            break;
        case 3:
        case 4:
            Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResL];
            for (k=0; k<36; ++k)
                *L++ = mpc_decoder_huffman_decode_faster(d, Table);
            break;
        case 5:
            Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResL];
            for (k=0; k<36; ++k)
                *L++ = mpc_decoder_huffman_decode_fast(d, Table);
            break;
        case 6:
        case 7:
            Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResL];
            for (k=0; k<36; ++k)
                *L++ = mpc_decoder_huffman_decode(d, Table);
            break;
        case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17:
            tmp = Dc[*ResL];
            for (k=0; k<36; ++k)
                *L++ = (mpc_int32_t)mpc_decoder_bitstream_read(d, Res_bit[*ResL]) - tmp;
            break;
        default:
            return;
        }
        /************** rechts **************/
        switch (*ResR)
        {
        case  -2: case  -3: case  -4: case  -5: case  -6: case  -7: case  -8: case  -9:
        case -10: case -11: case -12: case -13: case -14: case -15: case -16: case -17:
            R += 36;
            break;
        case -1:
                for (k=0; k<36; k++ ) {
                    tmp  = mpc_random_int(d);
                    *R++ = ((tmp >> 24) & 0xFF) + ((tmp >> 16) & 0xFF) + ((tmp >>  8) & 0xFF) + ((tmp >>  0) & 0xFF) - 510;
                }
                break;
            case 0:
                R += 36;// increase pointer
                break;
            case 1:
                Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][1];
                for (k=0; k<12; ++k)
                {
                    idx = mpc_decoder_huffman_decode_fast(d, Table);
                    *R++ = idx30[idx];
                    *R++ = idx31[idx];
                    *R++ = idx32[idx];
                }
                break;
            case 2:
                Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][2];
                for (k=0; k<18; ++k)
                {
                    idx = mpc_decoder_huffman_decode_fast(d, Table);
                    *R++ = idx50[idx];
                    *R++ = idx51[idx];
                }
                break;
            case 3:
            case 4:
                Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResR];
                for (k=0; k<36; ++k)
                    *R++ = mpc_decoder_huffman_decode_faster(d, Table);
                break;
            case 5:
                Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResR];
                for (k=0; k<36; ++k)
                    *R++ = mpc_decoder_huffman_decode_fast(d, Table);
                break;
            case 6:
            case 7:
                Table = mpc_table_HuffQ[mpc_decoder_bitstream_read(d, 1)][*ResR];
                for (k=0; k<36; ++k)
                    *R++ = mpc_decoder_huffman_decode(d, Table);
                break;
            case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17:
                tmp = Dc[*ResR];
                for (k=0; k<36; ++k)
                    *R++ = (mpc_int32_t)mpc_decoder_bitstream_read(d, Res_bit[*ResR]) - tmp;
                break;
            default:
                return;
        }
    }
}

void mpc_decoder_setup(mpc_decoder *d, mpc_reader *r)
{
  d->r = r;

  d->MPCHeaderPos = 0;
  d->StreamVersion = 0;
  d->MS_used = 0;
  d->FwdJumpInfo = 0;
  d->ActDecodePos = 0;
  d->FrameWasValid = 0;
  d->OverallFrames = 0;
  d->DecodedFrames = 0;
  d->TrueGaplessPresent = 0;
  d->last_block_samples = 0;
  d->WordsRead = 0;
  d->Max_Band = 0;
  d->SampleRate = 0;
  d->__r1 = 1;
  d->__r2 = 1;

  d->dword = 0;
  d->pos = 0;
  d->Zaehler = 0;
  d->WordsRead = 0;
  d->Max_Band = 0;

  mpc_decoder_initialisiere_quantisierungstabellen(d, 1.0f);

  /* Link struct entries to actual tables which are placed in IRAM */
  d->V_L = V_L;
  d->V_R = V_R;
  #if defined(CPU_COLDFIRE)&& !defined(SIMULATOR)
  coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
  #endif
}

void mpc_decoder_set_streaminfo(mpc_decoder *d, mpc_streaminfo *si)
{
    mpc_decoder_reset_synthesis(d);
    mpc_decoder_reset_globals(d);

    d->StreamVersion      = si->stream_version;
    d->MS_used            = si->ms;
    d->Max_Band           = si->max_band;
    d->OverallFrames      = si->frames;
    d->MPCHeaderPos       = si->header_position;
    d->TrueGaplessPresent = si->is_true_gapless;
    d->SampleRate         = (mpc_int32_t)si->sample_freq;

    d->samples_to_skip = MPC_DECODER_SYNTH_DELAY;
}

mpc_bool_t mpc_decoder_initialize(mpc_decoder *d, mpc_streaminfo *si) 
{
    mpc_decoder_set_streaminfo(d, si);

    // AB: setting position to the beginning of the data-bitstream
    switch (d->StreamVersion) {
    case 0x04: f_seek(d, 4 + d->MPCHeaderPos); d->pos = 16; break;  // Geht auch ber eine der Helperfunktionen
    case 0x05:
    case 0x06: f_seek(d, 8 + d->MPCHeaderPos); d->pos =  0; break;
    case 0x07:
    case 0x17: /*f_seek ( 24 + d->MPCHeaderPos );*/ d->pos =  8; break;
    default: return FALSE;
    }

    // AB: fill buffer and initialize decoder
    f_read_dword(d, d->Speicher, MEMSIZE );
    d->dword = d->Speicher[d->Zaehler = 0];

    return TRUE;
}

//---------------------------------------------------------------
// will seek from the beginning of the file to the desired
// position in ms (given by seek_needed)
//---------------------------------------------------------------
#if 0
static void
helper1(mpc_decoder *d, mpc_uint32_t bitpos) 
{
    f_seek(d, (bitpos >> 5) * 4 + d->MPCHeaderPos);
    f_read_dword(d, d->Speicher, 2);
    d->dword = d->Speicher[d->Zaehler = 0];
    d->pos = bitpos & 31;
}
#endif

static void
helper2(mpc_decoder *d, mpc_uint32_t bitpos) 
{
    f_seek(d, (bitpos>>5) * 4 + d->MPCHeaderPos);
    f_read_dword(d, d->Speicher, MEMSIZE);
    d->dword = d->Speicher[d->Zaehler = 0];
    d->pos = bitpos & 31;
}

#if 0
static void
helper3(mpc_decoder *d, mpc_uint32_t bitpos, mpc_uint32_t* buffoffs) 
{
    d->pos = bitpos & 31;
    bitpos >>= 5;
    if ((mpc_uint32_t)(bitpos - *buffoffs) >= MEMSIZE - 2) {
        *buffoffs = bitpos;
        f_seek(d, bitpos * 4L + d->MPCHeaderPos);
        f_read_dword(d, d->Speicher, MEMSIZE );
    }
    d->dword = d->Speicher[d->Zaehler = bitpos - *buffoffs ];
}
#endif

static mpc_uint32_t get_initial_fpos(mpc_decoder *d, mpc_uint32_t StreamVersion)
{
    mpc_uint32_t fpos = 0;
    (void) StreamVersion;
    switch ( d->StreamVersion ) {                                                  // setting position to the beginning of the data-bitstream
    case  0x04: fpos =  48; break;
    case  0x05:
    case  0x06: fpos =  64; break;
    case  0x07:
    case  0x17: fpos = 200; break;
    }
    return fpos;
}

mpc_bool_t mpc_decoder_seek_seconds(mpc_decoder *d, double seconds) 
{
    return mpc_decoder_seek_sample(d, (mpc_int64_t)(seconds * (double)d->SampleRate + 0.5));
}

mpc_bool_t mpc_decoder_seek_sample(mpc_decoder *d, mpc_int64_t destsample) 
{
    mpc_uint32_t fpos;
    mpc_uint32_t fwd;

    fwd = (mpc_uint32_t) (destsample / MPC_FRAME_LENGTH);
    d->samples_to_skip = MPC_DECODER_SYNTH_DELAY + (mpc_uint32_t)(destsample % MPC_FRAME_LENGTH);

    memset(d->Y_L          , 0, sizeof d->Y_L           );
    memset(d->Y_R          , 0, sizeof d->Y_R           );
    memset(d->SCF_Index_L     , 0, sizeof d->SCF_Index_L      );
    memset(d->SCF_Index_R     , 0, sizeof d->SCF_Index_R      );
    memset(d->Res_L           , 0, sizeof d->Res_L            );
    memset(d->Res_R           , 0, sizeof d->Res_R            );
    memset(d->SCFI_L          , 0, sizeof d->SCFI_L           );
    memset(d->SCFI_R          , 0, sizeof d->SCFI_R           );
    memset(d->DSCF_Flag_L     , 0, sizeof d->DSCF_Flag_L      );
    memset(d->DSCF_Flag_R     , 0, sizeof d->DSCF_Flag_R      );
    memset(d->DSCF_Reference_L, 0, sizeof d->DSCF_Reference_L );
    memset(d->DSCF_Reference_R, 0, sizeof d->DSCF_Reference_R );
    memset(d->Q               , 0, sizeof d->Q                );
    memset(d->MS_Flag         , 0, sizeof d->MS_Flag          );

    // resetting synthesis filter to avoid "clicks"
    mpc_decoder_reset_synthesis(d);

    // prevent from desired position out of allowed range
    fwd = fwd < d->OverallFrames  ?  fwd  :  d->OverallFrames;

    // reset number of decoded frames
    d->DecodedFrames = 0;

    fpos = get_initial_fpos(d, d->StreamVersion);
    if (fpos == 0) {
        return FALSE;
    }

    helper2(d, fpos);

    // read the last 32 frames before the desired position to scan the scalefactors (artifactless jumping)
    for ( ; d->DecodedFrames < fwd; d->DecodedFrames++ ) {
        mpc_uint32_t   FrameBitCnt;
        mpc_uint32_t   RING;
        RING         = d->Zaehler;
        d->FwdJumpInfo  = mpc_decoder_bitstream_read(d, 20);    // read jump-info
        d->ActDecodePos = (d->Zaehler << 5) + d->pos;
        FrameBitCnt  = mpc_decoder_bits_read(d);  // scanning the scalefactors and check for validity of frame
        if (d->StreamVersion >= 7)  {
            mpc_decoder_read_bitstream_sv7(d);
        }
        else {
#ifdef MPC_SUPPORT_SV456
            mpc_decoder_read_bitstream_sv6(d);
#else
            return FALSE;
#endif
        }
        if (mpc_decoder_bits_read(d) - FrameBitCnt != d->FwdJumpInfo ) {
            // Box ("Bug in perform_jump");
            return FALSE;
        }
        // update buffer
        if ((RING ^ d->Zaehler) & MEMSIZE2) {
            f_read_dword(d, d->Speicher + (RING & MEMSIZE2),  MEMSIZE2);
        }
    }

    // LastBitsRead = BitsRead ();
    // LastFrame = d->DecodedFrames;

    return TRUE;
}

void mpc_decoder_update_buffer(mpc_decoder *d, mpc_uint32_t RING) 
{
    if ((RING ^ d->Zaehler) & MEMSIZE2 ) {
        // update buffer
        f_read_dword(d, d->Speicher + (RING & MEMSIZE2), MEMSIZE2);
    }
}