summaryrefslogtreecommitdiffstats
path: root/apps/dsp.c
blob: 4ea2a0c3c4826bd8a5c474f2fd95b98769be49d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2005 Miika Pekkarinen
 *
 * All files in this archive are subject to the GNU General Public License.
 * See the file COPYING in the source tree root for full license agreement.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include <inttypes.h>
#include <string.h>
#include <sound.h>
#include "dsp.h"
#include "eq.h"
#include "kernel.h"
#include "playback.h"
#include "system.h"
#include "settings.h"
#include "replaygain.h"
#include "debug.h"

#ifndef SIMULATOR
#include <dsp_asm.h>
#endif

/* The "dither" code to convert the 24-bit samples produced by libmad was
 * taken from the coolplayer project - coolplayer.sourceforge.net
 */

/* 16-bit samples are scaled based on these constants. The shift should be
 * no more than 15.
 */
#define WORD_SHIFT          12
#define WORD_FRACBITS       27

#define NATIVE_DEPTH        16
#define SAMPLE_BUF_SIZE     256
#define RESAMPLE_BUF_SIZE   (256 * 4)   /* Enough for 11,025 Hz -> 44,100 Hz*/
#define DEFAULT_GAIN        0x01000000

#if defined(CPU_COLDFIRE) && !defined(SIMULATOR)

/* Multiply two S.31 fractional integers and return the sign bit and the
 * 31 most significant bits of the result.
 */
#define FRACMUL(x, y) \
({ \
    long t; \
    asm volatile ("mac.l    %[a], %[b], %%acc0\n\t" \
                  "movclr.l %%acc0, %[t]\n\t" \
                  : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
    t; \
})

/* Multiply one S.31-bit and one S8.23 fractional integer and return the
 * sign bit and the 31 most significant bits of the result.
 */
#define FRACMUL_8(x, y) \
({ \
    long t; \
    long u; \
    asm volatile ("mac.l    %[a], %[b], %%acc0\n\t" \
                  "move.l   %%accext01, %[u]\n\t" \
                  "movclr.l %%acc0, %[t]\n\t" \
                  : [t] "=r" (t), [u] "=r" (u) : [a] "r" (x), [b] "r" (y)); \
    (t << 8) | (u & 0xff); \
})

/* Multiply one S.31-bit and one S8.23 fractional integer and return the
 * sign bit and the 31 most significant bits of the result. Load next value
 * to multiply with into x from s (and increase s); x must contain the
 * initial value.
 */
#define FRACMUL_8_LOOP_PART(x, s, d, y) \
{ \
    long u; \
    asm volatile ("mac.l    %[a], %[b], (%[c])+, %[a], %%acc0\n\t" \
                  "move.l   %%accext01, %[u]\n\t" \
                  "movclr.l %%acc0, %[t]" \
                  : [a] "+r" (x), [c] "+a" (s), [t] "=r" (d), [u] "=r" (u) \
                  : [b] "r" (y)); \
    d = (d << 8) | (u & 0xff); \
}

#define FRACMUL_8_LOOP(x, y, s, d) \
{ \
    long t; \
    FRACMUL_8_LOOP_PART(x, s, t, y); \
    asm volatile ("move.l   %[t],(%[d])+" \
                  : [d] "+a" (d)\
                  : [t] "r" (t)); \
}

#define ACC(acc, x, y) \
    (void)acc; \
    asm volatile ("mac.l %[a], %[b], %%acc0" \
                  : : [a] "i,r" (x), [b] "i,r" (y));
#define GET_ACC(acc) \
({ \
    long t; \
    (void)acc; \
    asm volatile ("movclr.l %%acc0, %[t]" \
                  : [t] "=r" (t)); \
    t; \
})

#define ACC_INIT(acc, x, y) ACC(acc, x, y)

#elif defined(CPU_ARM) && !defined(SIMULATOR)

/* Multiply two S.31 fractional integers and return the sign bit and the
 * 31 most significant bits of the result.
 */
#define FRACMUL(x, y) \
({ \
    long t; \
    asm volatile ("smull    r0, r1, %[a], %[b]\n\t" \
                  "mov      %[t], r1, asl #1\n\t" \
                  "orr      %[t], %[t], r0, lsr #31\n\t" \
                  : [t] "=r" (t) : [a] "r" (x), [b] "r" (y) : "r0", "r1"); \
    t; \
})

#define ACC_INIT(acc, x, y) acc = FRACMUL(x, y)
#define ACC(acc, x, y) acc += FRACMUL(x, y)
#define GET_ACC(acc) acc

/* Multiply one S.31-bit and one S8.23 fractional integer and store the
 * sign bit and the 31 most significant bits of the result to d (and
 * increase d). Load next value to multiply with into x from s (and
 * increase s); x must contain the initial value.
 */
#define FRACMUL_8_LOOP(x, y, s, d) \
({ \
    asm volatile ("smull    r0, r1, %[a], %[b]\n\t" \
                  "mov      %[t], r1, asl #9\n\t" \
                  "orr      %[t], %[t], r0, lsr #23\n\t" \
                  : [t] "=r" (*(d)++) : [a] "r" (x), [b] "r" (y) : "r0", "r1"); \
    x = *(s)++; \
})

#else

#define ACC_INIT(acc, x, y) acc = FRACMUL(x, y)
#define ACC(acc, x, y) acc += FRACMUL(x, y)
#define GET_ACC(acc) acc
#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
#define FRACMUL_8(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 23))
#define FRACMUL_8_LOOP(x, y, s, d) \
({ \
    long t = x; \
    x = *(s)++; \
    *(d)++ = (long) (((((long long) (t)) * ((long long) (y))) >> 23)); \
})

#endif

struct dsp_config
{
    long codec_frequency; /* Sample rate of data coming from the codec */
    long frequency;       /* Effective sample rate after pitch shift (if any) */
    long clip_min;
    long clip_max;
    long track_gain;
    long album_gain;
    long track_peak;
    long album_peak;
    long replaygain;
    int sample_depth;
    int sample_bytes;
    int stereo_mode;
    int frac_bits;
    bool dither_enabled;
    bool new_gain;
    bool crossfeed_enabled;
    bool eq_enabled;
    long eq_precut;
    long gain;          /* Note that this is in S8.23 format. */
};

struct resample_data
{
    long phase, delta;
    int32_t last_sample[2];
};

struct dither_data
{
    long error[3];
    long random;
};

struct crossfeed_data
{
    int32_t gain;       /* Direct path gain */
    int32_t coefs[3];   /* Coefficients for the shelving filter */
    int32_t history[4]; /* Format is x[n - 1], y[n - 1] for both channels */
    int32_t delay[13][2];
    int index;          /* Current index into the delay line */
};

/* Current setup is one lowshelf filters, three peaking filters and one
   highshelf filter. Varying the number of shelving filters make no sense,
   but adding peaking filters is possible. */
struct eq_state {
    char enabled[5];    /* Flags for active filters */
    struct eqfilter filters[5];
};

static struct dsp_config dsp_conf[2] IBSS_ATTR;
static struct dither_data dither_data[2] IBSS_ATTR;
static struct resample_data resample_data[2] IBSS_ATTR;
struct crossfeed_data crossfeed_data IBSS_ATTR;
static struct eq_state eq_data;

static int pitch_ratio = 1000;
static int channels_mode = 0;
static int32_t sw_gain, sw_cross;

extern int current_codec;
struct dsp_config *dsp;

/* The internal format is 32-bit samples, non-interleaved, stereo. This
 * format is similar to the raw output from several codecs, so the amount
 * of copying needed is minimized for that case.
 */

static int32_t sample_buf[SAMPLE_BUF_SIZE] IBSS_ATTR;
static int32_t resample_buf[RESAMPLE_BUF_SIZE] IBSS_ATTR;

int sound_get_pitch(void)
{
    return pitch_ratio;
}

void sound_set_pitch(int permille)
{
    pitch_ratio = permille;
    
    dsp_configure(DSP_SWITCH_FREQUENCY, (int *)dsp->codec_frequency);
}

/* Convert at most count samples to the internal format, if needed. Returns
 * number of samples ready for further processing. Updates src to point
 * past the samples "consumed" and dst is set to point to the samples to
 * consume. Note that for mono, dst[0] equals dst[1], as there is no point
 * in processing the same data twice.
 */
static int convert_to_internal(const char* src[], int count, int32_t* dst[])
{
    count = MIN(SAMPLE_BUF_SIZE / 2, count);

    if ((dsp->sample_depth <= NATIVE_DEPTH)
        || (dsp->stereo_mode == STEREO_INTERLEAVED))
    {
        dst[0] = &sample_buf[0];
        dst[1] = (dsp->stereo_mode == STEREO_MONO)
            ? dst[0] : &sample_buf[SAMPLE_BUF_SIZE / 2];
    }
    else
    {
        dst[0] = (int32_t*) src[0];
        dst[1] = (int32_t*) ((dsp->stereo_mode == STEREO_MONO) ? src[0] : src[1]);
    }

    if (dsp->sample_depth <= NATIVE_DEPTH)
    {
        short* s0 = (short*) src[0];
        int32_t* d0 = dst[0];
        int32_t* d1 = dst[1];
        int scale = WORD_SHIFT;
        int i;

        if (dsp->stereo_mode == STEREO_INTERLEAVED)
        {
            for (i = 0; i < count; i++)
            {
                *d0++ = *s0++ << scale;
                *d1++ = *s0++ << scale;
            }
        }
        else if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
        {
            short* s1 = (short*) src[1];

            for (i = 0; i < count; i++)
            {
                *d0++ = *s0++ << scale;
                *d1++ = *s1++ << scale;
            }
        }
        else
        {
            for (i = 0; i < count; i++)
            {
                *d0++ = *s0++ << scale;
            }
        }
    }
    else if (dsp->stereo_mode == STEREO_INTERLEAVED)
    {
        int32_t* s0 = (int32_t*) src[0];
        int32_t* d0 = dst[0];
        int32_t* d1 = dst[1];
        int i;

        for (i = 0; i < count; i++)
        {
            *d0++ = *s0++;
            *d1++ = *s0++;
        }
    }

    if (dsp->stereo_mode == STEREO_NONINTERLEAVED)
    {
        src[0] += count * dsp->sample_bytes;
        src[1] += count * dsp->sample_bytes;
    }
    else if (dsp->stereo_mode == STEREO_INTERLEAVED)
    {
        src[0] += count * dsp->sample_bytes * 2;
    }
    else
    {
        src[0] += count * dsp->sample_bytes;
    }

    return count;
}

static void resampler_set_delta(int frequency)
{
    resample_data[current_codec].delta = (unsigned long) 
        frequency * 65536LL / NATIVE_FREQUENCY;
}

/* Linear interpolation resampling that introduces a one sample delay because
 * of our inability to look into the future at the end of a frame.
 */

/* TODO: we really should have a separate set of resample functions for both
   mono and stereo to avoid all this internal branching and looping. */
static long downsample(int32_t **dst, int32_t **src, int count,
    struct resample_data *r)
{
    long phase = r->phase;
    long delta = r->delta;
    int32_t last_sample;
    int32_t *d[2] = { dst[0], dst[1] };
    int pos = phase >> 16;
    int i = 1, j;
    int num_channels = dsp->stereo_mode == STEREO_MONO ? 1 : 2;
    
    for (j = 0; j < num_channels; j++) {
        last_sample = r->last_sample[j];
        /* Do we need last sample of previous frame for interpolation? */
        if (pos > 0)
        {
            last_sample = src[j][pos - 1];
        }
        *d[j]++ = last_sample + FRACMUL((phase & 0xffff) << 15,
            src[j][pos] - last_sample);
    }
    phase += delta;
 
    while ((pos = phase >> 16) < count)
    {
        for (j = 0; j < num_channels; j++)
            *d[j]++ = src[j][pos - 1] + FRACMUL((phase & 0xffff) << 15,
                src[j][pos] - src[j][pos - 1]);
         phase += delta;
         i++;
    }

    /* Wrap phase accumulator back to start of next frame. */
    r->phase = phase - (count << 16);
    r->delta = delta;
    r->last_sample[0] = src[0][count - 1];
    r->last_sample[1] = src[1][count - 1];
    return i;
}

static long upsample(int32_t **dst, int32_t **src, int count, struct resample_data *r)
{
    long phase = r->phase;
    long delta = r->delta;
    int32_t *d[2] = { dst[0], dst[1] };
    int i = 0, j;
    int pos;
    int num_channels = dsp->stereo_mode == STEREO_MONO ? 1 : 2;
    
    while ((pos = phase >> 16) == 0)
    {
       for (j = 0; j < num_channels; j++)
           *d[j]++ = r->last_sample[j] + FRACMUL((phase & 0xffff) << 15,
                src[j][pos] - r->last_sample[j]);
        phase += delta;
        i++;
    }

    while ((pos = phase >> 16) < count)
    {
        for (j = 0; j < num_channels; j++)
            *d[j]++ = src[j][pos - 1] + FRACMUL((phase & 0xffff) << 15,
                src[j][pos] - src[j][pos - 1]);
        phase += delta;
        i++;
    }

    /* Wrap phase accumulator back to start of next frame. */
    r->phase = phase - (count << 16);
    r->delta = delta;
    r->last_sample[0] = src[0][count - 1];
    r->last_sample[1] = src[1][count - 1];
    return i;
}

/* Resample count stereo samples. Updates the src array, if resampling is
 * done, to refer to the resampled data. Returns number of stereo samples
 * for further processing.
 */
static inline int resample(int32_t* src[], int count)
{
    long new_count;

    if (dsp->frequency != NATIVE_FREQUENCY)
    {
        int32_t* dst[2] = {&resample_buf[0], &resample_buf[RESAMPLE_BUF_SIZE / 2]};

        if (dsp->frequency < NATIVE_FREQUENCY)
        {
            new_count = upsample(dst, src, count, 
                            &resample_data[current_codec]);
        }
        else
        {
            new_count = downsample(dst, src, count,
                            &resample_data[current_codec]);
        }

        src[0] = dst[0];
        if (dsp->stereo_mode != STEREO_MONO)
            src[1] = dst[1];
        else
            src[1] = dst[0];
    }
    else
    {
        new_count = count;
    }

    return new_count;
}

static inline long clip_sample(int32_t sample, int32_t min, int32_t max)
{
    if (sample > max)
    {
        sample = max;
    }
    else if (sample < min)
    {
        sample = min;
    }

    return sample;
}

/* The "dither" code to convert the 24-bit samples produced by libmad was
 * taken from the coolplayer project - coolplayer.sourceforge.net
 */

static long dither_sample(int32_t sample, int32_t bias, int32_t mask,
    struct dither_data* dither)
{
    int32_t output;
    int32_t random;
    int32_t min;
    int32_t max;

    /* Noise shape and bias */

    sample += dither->error[0] - dither->error[1] + dither->error[2];
    dither->error[2] = dither->error[1];
    dither->error[1] = dither->error[0] / 2;

    output = sample + bias;

    /* Dither */

    random = dither->random * 0x0019660dL + 0x3c6ef35fL;
    sample += (random & mask) - (dither->random & mask);
    dither->random = random;

    /* Clip and quantize */

    min = dsp->clip_min;
    max = dsp->clip_max;
    sample = clip_sample(sample, min, max);
    output = clip_sample(output, min, max) & ~mask;

    /* Error feedback */

    dither->error[0] = sample - output;

    return output;
}

void dsp_set_crossfeed(bool enable)
{
    dsp->crossfeed_enabled = enable;
}

void dsp_set_crossfeed_direct_gain(int gain)
{
    /* Work around bug in get_replaygain_int which returns 0 for 0 dB */
    if (gain == 0)
        crossfeed_data.gain = 0x7fffffff;
    else
        crossfeed_data.gain = get_replaygain_int(gain * -10) << 7;
}

void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
{
    long g1 = get_replaygain_int(lf_gain * -10) << 3;
    long g2 = get_replaygain_int(hf_gain * -10) << 3;

    filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*cutoff, g1, g2,
                         crossfeed_data.coefs);
}

/* Applies crossfeed to the stereo signal in src.
 * Crossfeed is a process where listening over speakers is simulated. This
 * is good for old hard panned stereo records, which might be quite fatiguing
 * to listen to on headphones with no crossfeed.
 */
#ifndef DSP_HAVE_ASM_CROSSFEED
void apply_crossfeed(int32_t* src[], int count)
{
    int32_t *hist_l = &crossfeed_data.history[0];
    int32_t *hist_r = &crossfeed_data.history[2];
    int32_t *delay = &crossfeed_data.delay[0][0];
    int32_t *coefs = &crossfeed_data.coefs[0];
    int32_t gain = crossfeed_data.gain;
    int di = crossfeed_data.index;
 
    int32_t acc;
    int32_t left, right;
    int i;

    for (i = 0; i < count; i++) {
        left = src[0][i];
        right = src[1][i];

        /* Filter delayed sample from left speaker */
        ACC_INIT(acc, delay[di*2], coefs[0]);
        ACC(acc, hist_l[0], coefs[1]);
        ACC(acc, hist_l[1], coefs[2]);
        /* Save filter history for left speaker */
        hist_l[1] = GET_ACC(acc);
        hist_l[0] = delay[di*2];
        /* Filter delayed sample from right speaker */
        ACC_INIT(acc, delay[di*2 + 1], coefs[0]);
        ACC(acc, hist_r[0], coefs[1]);
        ACC(acc, hist_r[1], coefs[2]);
        /* Save filter history for right speaker */
        hist_r[1] = GET_ACC(acc);
        hist_r[0] = delay[di*2 + 1];
        delay[di*2] = left;
        delay[di*2 + 1] = right;
        /* Now add the attenuated direct sound and write to outputs */
        src[0][i] = FRACMUL(left, gain) + hist_r[1];
        src[1][i] = FRACMUL(right, gain) + hist_l[1];
 
        /* Wrap delay line index if bigger than delay line size */
        if (++di > 12)
            di = 0;
    }
    /* Write back local copies of data we've modified */
    crossfeed_data.index = di;
}
#endif

/* Combine all gains to a global gain. */
static void set_gain(void)
{
    dsp->gain = DEFAULT_GAIN;
    
    if (dsp->replaygain)
    {
        dsp->gain = dsp->replaygain;
    }
    
    if (dsp->eq_enabled && dsp->eq_precut)
    {
        dsp->gain = (long) (((int64_t) dsp->gain * dsp->eq_precut) >> 24);
    }
    
    if (dsp->gain == DEFAULT_GAIN)
    {
        dsp->gain = 0;
    }
    else
    {
        dsp->gain >>= 1;
    }
}

/**
 * Use to enable the equalizer.
 *
 * @param enable true to enable the equalizer
 */
void dsp_set_eq(bool enable)
{
    dsp->eq_enabled = enable;
}

/**
 * Update the amount to cut the audio before applying the equalizer.
 *
 * @param precut to apply in decibels (multiplied by 10)
 */
void dsp_set_eq_precut(int precut)
{
    dsp->eq_precut = get_replaygain_int(precut * -10);
    set_gain();
}

/**
 * Synchronize the equalizer filter coefficients with the global settings.
 *
 * @param band the equalizer band to synchronize
 */
void dsp_set_eq_coefs(int band)
{
    const int *setting;
    long gain;
    unsigned long cutoff, q;

    /* Adjust setting pointer to the band we actually want to change */
    setting = &global_settings.eq_band0_cutoff + (band * 3);

    /* Convert user settings to format required by coef generator functions */
    cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
    q = ((*setting++) << 16) / 10;        /* 16.16 */
    gain = ((*setting++) << 16) / 10;     /* s15.16 */
    
    if (q == 0)
        q = 1;
    
    /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
       which it should be, since we're executed from the main thread. */

    /* Assume a band is disabled if the gain is zero */
    if (gain == 0) {
        eq_data.enabled[band] = 0;
    } else {
        if (band == 0)
            eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
        else if (band == 4)
            eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
        else
            eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);

        eq_data.enabled[band] = 1;
    }
}

/* Apply EQ filters to those bands that have got it switched on. */
static void eq_process(int32_t **x, unsigned num)
{
    int i;
    unsigned int channels = dsp->stereo_mode != STEREO_MONO ? 2 : 1;
    unsigned shift;

    /* filter configuration currently is 1 low shelf filter, 3 band peaking
       filters and 1 high shelf filter, in that order. we need to know this
       so we can choose the correct shift factor.
     */
    for (i = 0; i < 5; i++) {
        if (eq_data.enabled[i]) {
            if (i == 0 || i == 4) /* shelving filters */
                shift = EQ_SHELF_SHIFT;
            else
                shift = EQ_PEAK_SHIFT;
            eq_filter(x, &eq_data.filters[i], num, channels, shift);
        }
    }
}

/* Apply a constant gain to the samples (e.g., for ReplayGain). May update
 * the src array if gain was applied.
 * Note that this must be called before the resampler.
 */
static void apply_gain(int32_t* _src[], int _count)
{
    if (dsp->gain)
    {
        int32_t** src = _src;
        int count = _count;
        int32_t* s0 = src[0];
        int32_t* s1 = src[1];
        long gain = dsp->gain;
        int32_t s;
        int i;
        int32_t *d;
    
        if (s0 != s1)
        {
            d = &sample_buf[SAMPLE_BUF_SIZE / 2];
            src[1] = d;
            s = *s1++;
    
            for (i = 0; i < count; i++)
                FRACMUL_8_LOOP(s, gain, s1, d);
        }
        else
        {
            src[1] = &sample_buf[0];
        }
    
        d = &sample_buf[0];
        src[0] = d;
        s = *s0++;
    
        for (i = 0; i < count; i++)
            FRACMUL_8_LOOP(s, gain, s0, d);
    }
}

void channels_set(int value)
{
    channels_mode =  value;    
}

void stereo_width_set(int value)
{
    long width, straight, cross;
    
    width = value * 0x7fffff / 100;
    if (value <= 100) {
        straight = (0x7fffff + width) / 2;
        cross = straight - width;
    } else {
        /* straight = (1 + width) / (2 * width) */
        straight = ((int64_t)(0x7fffff + width) << 22) / width;
        cross = straight - 0x7fffff;
    }
    sw_gain = straight << 8;
    sw_cross = cross << 8;
}

/* Implements the different channel configurations and stereo width.
 * We might want to combine this with the write_samples stage for efficiency,
 * but for now we'll just let it stay as a stage of its own. 
 */
static void channels_process(int32_t **src, int num)
{
    int i;
    int32_t *sl = src[0], *sr = src[1];

    if (channels_mode == SOUND_CHAN_STEREO)
        return;
    switch (channels_mode) {
    case SOUND_CHAN_MONO:
        for (i = 0; i < num; i++)
            sl[i] = sr[i] = sl[i]/2 + sr[i]/2;
        break;
    case SOUND_CHAN_CUSTOM:
        for (i = 0; i < num; i++) {
            int32_t left_sample = sl[i];

            sl[i] = FRACMUL(sl[i], sw_gain) + FRACMUL(sr[i], sw_cross);
            sr[i] = FRACMUL(sr[i], sw_gain) + FRACMUL(left_sample, sw_cross);
        }
        break;
    case SOUND_CHAN_MONO_LEFT:
        for (i = 0; i < num; i++)
            sr[i] = sl[i];
        break;
    case SOUND_CHAN_MONO_RIGHT:
        for (i = 0; i < num; i++)
            sl[i] = sr[i];
        break;
    case SOUND_CHAN_KARAOKE:
        for (i = 0; i < num; i++) {
            int32_t left_sample = sl[i]/2;
            
            sl[i] = left_sample - sr[i]/2;
            sr[i] = sr[i]/2 - left_sample;
        }
        break;
    }
}

static void write_samples(short* dst, int32_t* src[], int count)
{
    int32_t* s0 = src[0];
    int32_t* s1 = src[1];
    int scale = dsp->frac_bits + 1 - NATIVE_DEPTH;

    if (dsp->dither_enabled)
    {
        long bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
        long mask = (1L << scale) - 1;

        while (count-- > 0)
        {
            *dst++ = (short) (dither_sample(*s0++, bias, mask, &dither_data[0])
                >> scale);
            *dst++ = (short) (dither_sample(*s1++, bias, mask, &dither_data[1])
                >> scale);
        }
    }
    else
    {
        long min = dsp->clip_min;
        long max = dsp->clip_max;

        while (count-- > 0)
        {
            *dst++ = (short) (clip_sample(*s0++, min, max) >> scale);
            *dst++ = (short) (clip_sample(*s1++, min, max) >> scale);
        }
    }
}

/* Process and convert src audio to dst based on the DSP configuration,
 * reading size bytes of audio data. dst is assumed to be large enough; use
 * dst_get_dest_size() to get the required size. src is an array of
 * pointers; for mono and interleaved stereo, it contains one pointer to the
 * start of the audio data; for non-interleaved stereo, it contains two
 * pointers, one for each audio channel. Returns number of bytes written to
 * dest.
 */
long dsp_process(char* dst, const char* src[], long size)
{
    int32_t* tmp[2];
    long written = 0;
    long factor;
    int samples;

    #if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
    /* set emac unit for dsp processing, and save old macsr, we're running in
       codec thread context at this point, so can't clobber it */
    unsigned long old_macsr = coldfire_get_macsr();
    coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
    #endif

    dsp = &dsp_conf[current_codec];

    factor = (dsp->stereo_mode != STEREO_MONO) ? 2 : 1;
    size /= dsp->sample_bytes * factor;
    dsp_set_replaygain(false);

    while (size > 0)
    {
        samples = convert_to_internal(src, size, tmp);
        size -= samples;
        apply_gain(tmp, samples);
        samples = resample(tmp, samples);
        if (dsp->crossfeed_enabled && dsp->stereo_mode != STEREO_MONO)
            apply_crossfeed(tmp, samples);
        if (dsp->eq_enabled)
            eq_process(tmp, samples);
        if (dsp->stereo_mode != STEREO_MONO)
            channels_process(tmp, samples);
        write_samples((short*) dst, tmp, samples);
        written += samples;
        dst += samples * sizeof(short) * 2;
        yield();
    }
    #if defined(CPU_COLDFIRE) && !defined(SIMULATOR)
    /* set old macsr again */
    coldfire_set_macsr(old_macsr);
    #endif
    return written * sizeof(short) * 2;
}

/* Given size bytes of input data, calculate the maximum number of bytes of
 * output data that would be generated (the calculation is not entirely
 * exact and rounds upwards to be on the safe side; during resampling,
 * the number of samples generated depends on the current state of the
 * resampler).
 */
/* dsp_input_size MUST be called afterwards */
long dsp_output_size(long size)
{
    dsp = &dsp_conf[current_codec];
    
    if (dsp->sample_depth > NATIVE_DEPTH)
    {
        size /= 2;
    }

    if (dsp->frequency != NATIVE_FREQUENCY)
    {
        size = (long) ((((unsigned long) size * NATIVE_FREQUENCY)
            + (dsp->frequency - 1)) / dsp->frequency);
    }

    /* round to the next multiple of 2 (these are shorts) */
    size = (size + 1) & ~1;

    if (dsp->stereo_mode == STEREO_MONO)
    {
        size *= 2;
    }

    /* now we have the size in bytes for two resampled channels,
     * and the size in (short) must not exceed RESAMPLE_BUF_SIZE to
     * avoid resample buffer overflow. One must call dsp_input_size()
     * to get the correct input buffer size. */
    if (size > RESAMPLE_BUF_SIZE*2)
        size = RESAMPLE_BUF_SIZE*2;

    return size;
}

/* Given size bytes of output buffer, calculate number of bytes of input
 * data that would be consumed in order to fill the output buffer.
 */
long dsp_input_size(long size)
{
    dsp = &dsp_conf[current_codec];
    
    /* convert to number of output stereo samples. */
    size /= 2;

    /* Mono means we need half input samples to fill the output buffer */
    if (dsp->stereo_mode == STEREO_MONO)
        size /= 2;

    /* size is now the number of resampled input samples. Convert to
       original input samples. */
    if (dsp->frequency != NATIVE_FREQUENCY)
    {
        /* Use the real resampling delta =
         *  (unsigned long) dsp->frequency * 65536 / NATIVE_FREQUENCY, and
         * round towards zero to avoid buffer overflows. */
        size = ((unsigned long)size *
            resample_data[current_codec].delta) >> 16;
    }

    /* Convert back to bytes. */
    if (dsp->sample_depth > NATIVE_DEPTH)
        size *= 4;
    else
        size *= 2;

    return size;
}

int dsp_stereo_mode(void)
{
    dsp = &dsp_conf[current_codec];
    
    return dsp->stereo_mode;
}

bool dsp_configure(int setting, void *value)
{
    dsp = &dsp_conf[current_codec];

    switch (setting)
    {
    case DSP_SET_FREQUENCY:
        memset(&resample_data[current_codec], 0,
            sizeof(struct resample_data));
        /* Fall through!!! */
    case DSP_SWITCH_FREQUENCY:
        dsp->codec_frequency = ((long) value == 0) ? NATIVE_FREQUENCY : (long) value;
        /* Account for playback speed adjustment when settingg dsp->frequency
           if we're called from the main audio thread. Voice UI thread should
           not need this feature.
         */
        if (current_codec == CODEC_IDX_AUDIO)
            dsp->frequency = pitch_ratio * dsp->codec_frequency / 1000;
        else
            dsp->frequency = dsp->codec_frequency;
        resampler_set_delta(dsp->frequency); 
        break;

    case DSP_SET_CLIP_MIN:
        dsp->clip_min = (long) value;
        break;

    case DSP_SET_CLIP_MAX:
        dsp->clip_max = (long) value;
        break;

    case DSP_SET_SAMPLE_DEPTH:
        dsp->sample_depth = (long) value;

        if (dsp->sample_depth <= NATIVE_DEPTH)
        {
            dsp->frac_bits = WORD_FRACBITS;
            dsp->sample_bytes = sizeof(short);
            dsp->clip_max =  ((1 << WORD_FRACBITS) - 1);
            dsp->clip_min = -((1 << WORD_FRACBITS));
        }
        else
        {
            dsp->frac_bits = (long) value;
            dsp->sample_bytes = 4; /* samples are 32 bits */
            dsp->clip_max = (1 << (long)value) - 1;
            dsp->clip_min = -(1 << (long)value);
        }

        break;

    case DSP_SET_STEREO_MODE:
        dsp->stereo_mode = (long) value;
        break;

    case DSP_RESET:
        dsp->dither_enabled = false;
        dsp->stereo_mode = STEREO_NONINTERLEAVED;
        dsp->clip_max =  ((1 << WORD_FRACBITS) - 1);
        dsp->clip_min = -((1 << WORD_FRACBITS));
        dsp->track_gain = 0;
        dsp->album_gain = 0;
        dsp->track_peak = 0;
        dsp->album_peak = 0;
        dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
        dsp->sample_depth = NATIVE_DEPTH;
        dsp->frac_bits = WORD_FRACBITS;
        dsp->new_gain = true;
        break;

    case DSP_DITHER:
        memset(dither_data, 0, sizeof(dither_data));
        dsp->dither_enabled = (bool) value;
        break;

    case DSP_SET_TRACK_GAIN:
        dsp->track_gain = (long) value;
        dsp->new_gain = true;
        break;

    case DSP_SET_ALBUM_GAIN:
        dsp->album_gain = (long) value;
        dsp->new_gain = true;
        break;

    case DSP_SET_TRACK_PEAK:
        dsp->track_peak = (long) value;
        dsp->new_gain = true;
        break;

    case DSP_SET_ALBUM_PEAK:
        dsp->album_peak = (long) value;
        dsp->new_gain = true;
        break;

    default:
        return 0;
    }

    return 1;
}

void dsp_set_replaygain(bool always)
{
    dsp = &dsp_conf[current_codec];
    
    if (always || dsp->new_gain)
    {
        long gain = 0;

        dsp->new_gain = false;

        if (global_settings.replaygain || global_settings.replaygain_noclip)
        {
            bool track_mode
                = ((global_settings.replaygain_type == REPLAYGAIN_TRACK)
                    || ((global_settings.replaygain_type == REPLAYGAIN_SHUFFLE)
                        && global_settings.playlist_shuffle));
            long peak = (track_mode || !dsp->album_peak)
                ? dsp->track_peak : dsp->album_peak;

            if (global_settings.replaygain)
            {
                gain = (track_mode || !dsp->album_gain)
                    ? dsp->track_gain : dsp->album_gain;

                if (global_settings.replaygain_preamp)
                {
                    long preamp = get_replaygain_int(
                        global_settings.replaygain_preamp * 10);

                    gain = (long) (((int64_t) gain * preamp) >> 24);
                }
            }

            if (gain == 0)
            {
                /* So that noclip can work even with no gain information. */
                gain = DEFAULT_GAIN;
            }

            if (global_settings.replaygain_noclip && (peak != 0)
                && ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
            {
                gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
            }

            if (gain == DEFAULT_GAIN)
            {
                /* Nothing to do, disable processing. */
                gain = 0;

            }
        }

        /* Store in S8.23 format to simplify calculations. */
        dsp->replaygain = gain;
        set_gain();
    }
}