summaryrefslogtreecommitdiffstats
path: root/apps/dsp.c
blob: e0cea6d41b13c1d4b1d12abd516daecf38f75a0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2005 Miika Pekkarinen
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include "config.h"
#include <stdbool.h>
#include <inttypes.h>
#include <string.h>
#include <sound.h>
#include "dsp.h"
#include "eq.h"
#include "kernel.h"
#include "playback.h"
#include "system.h"
#include "settings.h"
#include "replaygain.h"
#include "misc.h"
#include "tdspeed.h"
#include "buffer.h"
#include "fixedpoint.h"
#include "fracmul.h"
#include "pcmbuf.h"

/* Define LOGF_ENABLE to enable logf output in this file */
/*#define LOGF_ENABLE*/
#include "logf.h"

/* 16-bit samples are scaled based on these constants. The shift should be
 * no more than 15.
 */
#define WORD_SHIFT              12
#define WORD_FRACBITS           27

#define NATIVE_DEPTH            16
/* If the small buffer size changes, check the assembly code! */
#define SMALL_SAMPLE_BUF_COUNT  256
#define DEFAULT_GAIN            0x01000000

/* enums to index conversion properly with stereo mode and other settings */
enum
{
    SAMPLE_INPUT_LE_NATIVE_I_STEREO  = STEREO_INTERLEAVED,
    SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
    SAMPLE_INPUT_LE_NATIVE_MONO      = STEREO_MONO,
    SAMPLE_INPUT_GT_NATIVE_I_STEREO  = STEREO_INTERLEAVED + STEREO_NUM_MODES,
    SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
    SAMPLE_INPUT_GT_NATIVE_MONO      = STEREO_MONO + STEREO_NUM_MODES,
    SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
};

enum
{
    SAMPLE_OUTPUT_MONO = 0,
    SAMPLE_OUTPUT_STEREO,
    SAMPLE_OUTPUT_DITHERED_MONO,
    SAMPLE_OUTPUT_DITHERED_STEREO
};

/****************************************************************************
 * NOTE: Any assembly routines that use these structures must be updated
 * if current data members are moved or changed.
 */
struct resample_data
{
    uint32_t delta;                     /* 00h */
    uint32_t phase;                     /* 04h */
    int32_t last_sample[2];             /* 08h */
                                        /* 10h */
};

/* This is for passing needed data to assembly dsp routines. If another
 * dsp parameter needs to be passed, add to the end of the structure
 * and remove from dsp_config.
 * If another function type becomes assembly optimized and requires dsp
 * config info, add a pointer paramter of type "struct dsp_data *".
 * If removing something from other than the end, reserve the spot or
 * else update every implementation for every target.
 * Be sure to add the offset of the new member for easy viewing as well. :)
 * It is the first member of dsp_config and all members can be accessesed
 * through the main aggregate but this is intended to make a safe haven
 * for these items whereas the c part can be rearranged at will. dsp_data
 * could even moved within dsp_config without disurbing the order.
 */
struct dsp_data
{
    int output_scale;                   /* 00h */
    int num_channels;                   /* 04h */
    struct resample_data resample_data; /* 08h */
    int32_t clip_min;                   /* 18h */
    int32_t clip_max;                   /* 1ch */
    int32_t gain;                       /* 20h - Note that this is in S8.23 format. */
                                        /* 24h */
};

/* No asm...yet */
struct dither_data
{
    long error[3];  /* 00h */
    long random;    /* 0ch */
                    /* 10h */
};

struct crossfeed_data
{
    int32_t gain;           /* 00h - Direct path gain */
    int32_t coefs[3];       /* 04h - Coefficients for the shelving filter */
    int32_t history[4];     /* 10h - Format is x[n - 1], y[n - 1] for both channels */
    int32_t delay[13][2];   /* 20h */
    int32_t *index;         /* 88h - Current pointer into the delay line */
                            /* 8ch */
};

/* Current setup is one lowshelf filters three peaking filters and one
 *  highshelf filter. Varying the number of shelving filters make no sense,
 *  but adding peaking filters is possible.
 */
struct eq_state
{
    char enabled[5];            /* 00h - Flags for active filters */
    struct eqfilter filters[5]; /* 08h - packing is 4? */
                                /* 10ch */
};

struct compressor_menu
{
    int  threshold;     /* dB - from menu */
    int  ratio;         /* from menu */
    int  gain;          /* dB - from menu */
    bool soft_knee;     /* 0 = hard knee, 1 = soft knee */     
    int  release;       /* samples - from menu */
};

/* Include header with defines which functions are implemented in assembly
   code for the target */
#include <dsp_asm.h>

/* Typedefs keep things much neater in this case */
typedef void (*sample_input_fn_type)(int count, const char *src[],
                                     int32_t *dst[]);
typedef int (*resample_fn_type)(int count, struct dsp_data *data,
                                const int32_t *src[], int32_t *dst[]);
typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
                                      const int32_t *src[], int16_t *dst);

/* Single-DSP channel processing in place */
typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
/* DSP local channel processing in place */
typedef void (*channels_process_dsp_fn_type)(int count, struct dsp_data *data,
                                             int32_t *buf[]);

/*
 ***************************************************************************/

struct dsp_config
{
    struct dsp_data data; /* Config members for use in asm routines */
    long codec_frequency; /* Sample rate of data coming from the codec */
    long frequency;       /* Effective sample rate after pitch shift (if any) */
    int  sample_depth;
    int  sample_bytes;
    int  stereo_mode;
    int32_t  tdspeed_percent; /* Speed% * PITCH_SPEED_PRECISION */
    bool tdspeed_active;  /* Timestretch is in use */
    int  frac_bits;
#ifdef HAVE_SW_TONE_CONTROLS
    /* Filter struct for software bass/treble controls */
    struct eqfilter tone_filter;
#endif
    /* Functions that change depending upon settings - NULL if stage is
       disabled */
    sample_input_fn_type         input_samples;
    resample_fn_type             resample;
    sample_output_fn_type        output_samples;
    /* These will be NULL for the voice codec and is more economical that
       way */
    channels_process_dsp_fn_type apply_gain;
    channels_process_fn_type     apply_crossfeed;
    channels_process_fn_type     eq_process;
    channels_process_fn_type     channels_process;
    channels_process_fn_type     compressor_process;
};

/* General DSP config */
static struct dsp_config dsp_conf[2] IBSS_ATTR;     /* 0=A, 1=V */
/* Dithering */
static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
static long   dither_mask IBSS_ATTR;
static long   dither_bias IBSS_ATTR;
/* Crossfeed */
struct crossfeed_data crossfeed_data IDATA_ATTR =    /* A */
{
    .index = (int32_t *)crossfeed_data.delay
};

/* Equalizer */
static struct eq_state eq_data;                     /* A */

/* Software tone controls */
#ifdef HAVE_SW_TONE_CONTROLS
static int prescale;                                /* A/V */
static int bass;                                    /* A/V */
static int treble;                                  /* A/V */
#endif

/* Settings applicable to audio codec only */
static int32_t  pitch_ratio = PITCH_SPEED_100;
static int  channels_mode;
       long dsp_sw_gain;
       long dsp_sw_cross;
static bool dither_enabled;
static long eq_precut;
static long track_gain;
static bool new_gain;
static long album_gain;
static long track_peak;
static long album_peak;
static long replaygain;
static bool crossfeed_enabled;

#define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
#define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])

/* The internal format is 32-bit samples, non-interleaved, stereo. This
 * format is similar to the raw output from several codecs, so the amount
 * of copying needed is minimized for that case.
 */

#define RESAMPLE_RATIO          4 /* Enough for 11,025 Hz -> 44,100 Hz */

static int32_t small_sample_buf[SMALL_SAMPLE_BUF_COUNT] IBSS_ATTR;
static int32_t small_resample_buf[SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO] IBSS_ATTR;

static int32_t *big_sample_buf = NULL;
static int32_t *big_resample_buf = NULL;
static int big_sample_buf_count = -1;  /* -1=unknown, 0=not available */

static int sample_buf_count;
static int32_t *sample_buf;
static int32_t *resample_buf;

#define SAMPLE_BUF_LEFT_CHANNEL 0
#define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
#define RESAMPLE_BUF_LEFT_CHANNEL 0
#define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)

/* compressor */
static struct   compressor_menu c_menu;
static int32_t comp_rel_slope IBSS_ATTR;   /* S7.24 format */
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
static int32_t comp_curve[66] IBSS_ATTR;   /* S7.24 format */
static int32_t release_gain IBSS_ATTR;     /* S7.24 format */
#define UNITY (1L << 24)                   /* unity gain in S7.24 format */
static void     compressor_process(int count, int32_t *buf[]);


/* Clip sample to signed 16 bit range */
static inline int32_t clip_sample_16(int32_t sample)
{
    if ((int16_t)sample != sample)
        sample = 0x7fff ^ (sample >> 31);
    return sample;
}

int32_t sound_get_pitch(void)
{
    return pitch_ratio;
}

void sound_set_pitch(int32_t percent)
{
    pitch_ratio = percent;
    dsp_configure(&AUDIO_DSP, DSP_SWITCH_FREQUENCY,
                  AUDIO_DSP.codec_frequency);
}

static void tdspeed_setup(struct dsp_config *dspc)
{
    /* Assume timestretch will not be used */
    dspc->tdspeed_active = false;
    sample_buf = small_sample_buf;
    resample_buf = small_resample_buf;
    sample_buf_count = SMALL_SAMPLE_BUF_COUNT;

    if(!dsp_timestretch_available())
        return; /* Timestretch not enabled or buffer not allocated */
    if (dspc->tdspeed_percent == 0)
        dspc->tdspeed_percent = PITCH_SPEED_100;
    if (!tdspeed_config(
        dspc->codec_frequency == 0 ? NATIVE_FREQUENCY : dspc->codec_frequency,
        dspc->stereo_mode != STEREO_MONO,
        dspc->tdspeed_percent))
        return; /* Timestretch not possible or needed with these parameters */

    /* Timestretch is to be used */
    dspc->tdspeed_active = true;
    sample_buf = big_sample_buf;
    sample_buf_count = big_sample_buf_count;
    resample_buf = big_resample_buf;
}

void dsp_timestretch_enable(bool enabled)
{
    /* Hook to set up timestretch buffer on first call to settings_apply() */
    if (big_sample_buf_count < 0) /* Only do something on first call */
    {
        if (enabled)
        {
            /* Set up timestretch buffers */
            big_sample_buf_count = SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO;
            big_sample_buf = small_resample_buf;
            big_resample_buf = (int32_t *) buffer_alloc(big_sample_buf_count * RESAMPLE_RATIO * sizeof(int32_t));
        }
        else
        {
            /* Not enabled at startup, "big" buffers will never be available */
            big_sample_buf_count = 0;
        }
        tdspeed_setup(&AUDIO_DSP);
    }
}

void dsp_set_timestretch(int32_t percent)
{
    AUDIO_DSP.tdspeed_percent = percent;
    tdspeed_setup(&AUDIO_DSP);
}

int32_t dsp_get_timestretch()
{
    return AUDIO_DSP.tdspeed_percent;
}

bool dsp_timestretch_available()
{
    return (global_settings.timestretch_enabled && big_sample_buf_count > 0);
}

/* Convert count samples to the internal format, if needed.  Updates src
 * to point past the samples "consumed" and dst is set to point to the
 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
 * is no point in processing the same data twice.
 */

/* convert count 16-bit mono to 32-bit mono */
static void sample_input_lte_native_mono(
    int count, const char *src[], int32_t *dst[])
{
    const int16_t *s = (int16_t *) src[0];
    const int16_t * const send = s + count;
    int32_t *d = dst[0] = dst[1] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
    int scale = WORD_SHIFT;

    while (s < send)
    {
        *d++ = *s++ << scale;
    }

    src[0] = (char *)s;
}

/* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
static void sample_input_lte_native_i_stereo(
    int count, const char *src[], int32_t *dst[])
{
    const int32_t *s = (int32_t *) src[0];
    const int32_t * const send = s + count;
    int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
    int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
    int scale = WORD_SHIFT;

    while (s < send)
    {
        int32_t slr = *s++;
#ifdef ROCKBOX_LITTLE_ENDIAN
        *dl++ = (slr >> 16) << scale;
        *dr++ = (int32_t)(int16_t)slr << scale;
#else  /* ROCKBOX_BIG_ENDIAN */
        *dl++ = (int32_t)(int16_t)slr << scale;
        *dr++ = (slr >> 16) << scale;
#endif
    }

    src[0] = (char *)s;
}

/* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
static void sample_input_lte_native_ni_stereo(
    int count, const char *src[], int32_t *dst[])
{
    const int16_t *sl = (int16_t *) src[0];
    const int16_t *sr = (int16_t *) src[1];
    const int16_t * const slend = sl + count;
    int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
    int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
    int scale = WORD_SHIFT;

    while (sl < slend)
    {
        *dl++ = *sl++ << scale;
        *dr++ = *sr++ << scale;
    }

    src[0] = (char *)sl;
    src[1] = (char *)sr;
}

/* convert count 32-bit mono to 32-bit mono */
static void sample_input_gt_native_mono(
    int count, const char *src[], int32_t *dst[])
{
    dst[0] = dst[1] = (int32_t *)src[0];
    src[0] = (char *)(dst[0] + count);
}

/* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
static void sample_input_gt_native_i_stereo(
    int count, const char *src[], int32_t *dst[])
{
    const int32_t *s = (int32_t *)src[0];
    const int32_t * const send = s + 2*count;
    int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
    int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];

    while (s < send)
    {
        *dl++ = *s++;
        *dr++ = *s++;
    }

    src[0] = (char *)send;
}

/* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
static void sample_input_gt_native_ni_stereo(
    int count, const char *src[], int32_t *dst[])
{
    dst[0] = (int32_t *)src[0];
    dst[1] = (int32_t *)src[1];
    src[0] = (char *)(dst[0] + count);
    src[1] = (char *)(dst[1] + count);
}

/**
 * sample_input_new_format()
 *
 * set the to-native sample conversion function based on dsp sample parameters
 *
 * !DSPPARAMSYNC
 * needs syncing with changes to the following dsp parameters:
 *  * dsp->stereo_mode (A/V)
 *  * dsp->sample_depth (A/V)
 */
static void sample_input_new_format(struct dsp_config *dsp)
{
    static const sample_input_fn_type sample_input_functions[] =
    {
        [SAMPLE_INPUT_LE_NATIVE_I_STEREO]  = sample_input_lte_native_i_stereo,
        [SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
        [SAMPLE_INPUT_LE_NATIVE_MONO]      = sample_input_lte_native_mono,
        [SAMPLE_INPUT_GT_NATIVE_I_STEREO]  = sample_input_gt_native_i_stereo,
        [SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
        [SAMPLE_INPUT_GT_NATIVE_MONO]      = sample_input_gt_native_mono,
    };

    int convert = dsp->stereo_mode;

    if (dsp->sample_depth > NATIVE_DEPTH)
        convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;

    dsp->input_samples = sample_input_functions[convert];
}


#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
/* write mono internal format to output format */
static void sample_output_mono(int count, struct dsp_data *data,
                               const int32_t *src[], int16_t *dst)
{
    const int32_t *s0 = src[0];
    const int scale = data->output_scale;
    const int dc_bias = 1 << (scale - 1);

    while (count-- > 0)
    {
        int32_t lr = clip_sample_16((*s0++ + dc_bias) >> scale);
        *dst++ = lr;
        *dst++ = lr;
    }
}
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */

/* write stereo internal format to output format */
#ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
static void sample_output_stereo(int count, struct dsp_data *data,
                                 const int32_t *src[], int16_t *dst)
{
    const int32_t *s0 = src[0];
    const int32_t *s1 = src[1];
    const int scale = data->output_scale;
    const int dc_bias = 1 << (scale - 1);

    while (count-- > 0)
    {
        *dst++ = clip_sample_16((*s0++ + dc_bias) >> scale);
        *dst++ = clip_sample_16((*s1++ + dc_bias) >> scale);
    }
}
#endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */

/**
 * The "dither" code to convert the 24-bit samples produced by libmad was
 * taken from the coolplayer project - coolplayer.sourceforge.net
 *
 * This function handles mono and stereo outputs.
 */
static void sample_output_dithered(int count, struct dsp_data *data,
                                   const int32_t *src[], int16_t *dst)
{
    const int32_t mask = dither_mask;
    const int32_t bias = dither_bias;
    const int scale = data->output_scale;
    const int32_t min = data->clip_min;
    const int32_t max = data->clip_max;
    const int32_t range = max - min;
    int ch;
    int16_t *d;

    for (ch = 0; ch < data->num_channels; ch++)
    {
        struct dither_data * const dither = &dither_data[ch];
        const int32_t *s = src[ch];
        int i;

        for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
        {
            int32_t output, sample;
            int32_t random;

            /* Noise shape and bias (for correct rounding later) */
            sample = *s;
            sample += dither->error[0] - dither->error[1] + dither->error[2];
            dither->error[2] = dither->error[1];
            dither->error[1] = dither->error[0]/2;

            output = sample + bias;

            /* Dither, highpass triangle PDF */
            random = dither->random*0x0019660dL + 0x3c6ef35fL;
            output += (random & mask) - (dither->random & mask);
            dither->random = random;

            /* Round sample to output range */
            output &= ~mask;

            /* Error feedback */
            dither->error[0] = sample - output;

            /* Clip */
            if ((uint32_t)(output - min) > (uint32_t)range)
            {
                int32_t c = min;
                if (output > min)
                    c += range;
                output = c;
            }

            /* Quantize and store */
            *d = output >> scale;
        }
    }

    if (data->num_channels == 2)
        return;

    /* Have to duplicate left samples into the right channel since
       pcm buffer and hardware is interleaved stereo */
    d = &dst[0];

    while (count-- > 0)
    {
        int16_t s = *d++;
        *d++ = s;
    }
}

/**
 * sample_output_new_format()
 *
 * set the from-native to ouput sample conversion routine
 *
 * !DSPPARAMSYNC
 * needs syncing with changes to the following dsp parameters:
 *  * dsp->stereo_mode (A/V)
 *  * dither_enabled (A)
 */
static void sample_output_new_format(struct dsp_config *dsp)
{
    static const sample_output_fn_type sample_output_functions[] =
    {
        sample_output_mono,
        sample_output_stereo,
        sample_output_dithered,
        sample_output_dithered
    };

    int out = dsp->data.num_channels - 1;

    if (dsp == &AUDIO_DSP && dither_enabled)
        out += 2;

    dsp->output_samples = sample_output_functions[out];
}

/**
 * Linear interpolation resampling that introduces a one sample delay because
 * of our inability to look into the future at the end of a frame.
 */
#ifndef DSP_HAVE_ASM_RESAMPLING
static int dsp_downsample(int count, struct dsp_data *data,
                          const int32_t *src[], int32_t *dst[])
{
    int ch = data->num_channels - 1;
    uint32_t delta = data->resample_data.delta;
    uint32_t phase, pos;
    int32_t *d;

    /* Rolled channel loop actually showed slightly faster. */
    do
    {
        /* Just initialize things and not worry too much about the relatively
         * uncommon case of not being able to spit out a sample for the frame.
         */
        const int32_t *s = src[ch];
        int32_t last = data->resample_data.last_sample[ch];

        data->resample_data.last_sample[ch] = s[count - 1];
        d = dst[ch];
        phase = data->resample_data.phase;
        pos = phase >> 16;

        /* Do we need last sample of previous frame for interpolation? */
        if (pos > 0)
            last = s[pos - 1];

        while (pos < (uint32_t)count)
        {
            *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
            phase += delta;
            pos = phase >> 16;
            last = s[pos - 1];
        }
    }
    while (--ch >= 0);

    /* Wrap phase accumulator back to start of next frame. */
    data->resample_data.phase = phase - (count << 16);
    return d - dst[0];
}

static int dsp_upsample(int count, struct dsp_data *data,
                        const int32_t *src[], int32_t *dst[])
{
    int  ch = data->num_channels - 1;
    uint32_t delta = data->resample_data.delta;
    uint32_t phase, pos;
    int32_t *d;

    /* Rolled channel loop actually showed slightly faster. */
    do
    {
        /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
        const int32_t *s = src[ch];
        int32_t last = data->resample_data.last_sample[ch];

        data->resample_data.last_sample[ch] = s[count - 1];
        d = dst[ch];
        phase = data->resample_data.phase;
        pos = phase >> 16;

        while (pos == 0)
        {
            *d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
            phase += delta;
            pos = phase >> 16;
        }

        while (pos < (uint32_t)count)
        {
            last = s[pos - 1];
            *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
            phase += delta;
            pos = phase >> 16;
        }
    }
    while (--ch >= 0);

    /* Wrap phase accumulator back to start of next frame. */
    data->resample_data.phase = phase & 0xffff;
    return d - dst[0];
}
#endif /* DSP_HAVE_ASM_RESAMPLING */

static void resampler_new_delta(struct dsp_config *dsp)
{
    dsp->data.resample_data.delta = (unsigned long)
        dsp->frequency * 65536LL / NATIVE_FREQUENCY;

    if (dsp->frequency == NATIVE_FREQUENCY)
    {
        /* NOTE: If fully glitch-free transistions from no resampling to
           resampling are desired, last_sample history should be maintained
           even when not resampling. */
        dsp->resample = NULL;
        dsp->data.resample_data.phase = 0;
        dsp->data.resample_data.last_sample[0] = 0;
        dsp->data.resample_data.last_sample[1] = 0;
    }
    else if (dsp->frequency < NATIVE_FREQUENCY)
        dsp->resample = dsp_upsample;
    else
        dsp->resample = dsp_downsample;
}

/* Resample count stereo samples. Updates the src array, if resampling is
 * done, to refer to the resampled data. Returns number of stereo samples
 * for further processing.
 */
static inline int resample(struct dsp_config *dsp, int count, int32_t *src[])
{
    int32_t *dst[2] =
    {
        &resample_buf[RESAMPLE_BUF_LEFT_CHANNEL],
        &resample_buf[RESAMPLE_BUF_RIGHT_CHANNEL],
    };

    count = dsp->resample(count, &dsp->data, (const int32_t **)src, dst);

    src[0] = dst[0];
    src[1] = dst[dsp->data.num_channels - 1];

    return count;
}

static void dither_init(struct dsp_config *dsp)
{
    memset(dither_data, 0, sizeof (dither_data));
    dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
    dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
}

void dsp_dither_enable(bool enable)
{
    struct dsp_config *dsp = &AUDIO_DSP;
    dither_enabled = enable;
    sample_output_new_format(dsp);
}

/* Applies crossfeed to the stereo signal in src.
 * Crossfeed is a process where listening over speakers is simulated. This
 * is good for old hard panned stereo records, which might be quite fatiguing
 * to listen to on headphones with no crossfeed.
 */
#ifndef DSP_HAVE_ASM_CROSSFEED
static void apply_crossfeed(int count, int32_t *buf[])
{
    int32_t *hist_l = &crossfeed_data.history[0];
    int32_t *hist_r = &crossfeed_data.history[2];
    int32_t *delay = &crossfeed_data.delay[0][0];
    int32_t *coefs = &crossfeed_data.coefs[0];
    int32_t gain = crossfeed_data.gain;
    int32_t *di = crossfeed_data.index;

    int32_t acc;
    int32_t left, right;
    int i;

    for (i = 0; i < count; i++)
    {
        left = buf[0][i];
        right = buf[1][i];

        /* Filter delayed sample from left speaker */
        acc = FRACMUL(*di, coefs[0]);
        acc += FRACMUL(hist_l[0], coefs[1]);
        acc += FRACMUL(hist_l[1], coefs[2]);
        /* Save filter history for left speaker */
        hist_l[1] = acc;
        hist_l[0] = *di;
        *di++ = left;
        /* Filter delayed sample from right speaker */
        acc = FRACMUL(*di, coefs[0]);
        acc += FRACMUL(hist_r[0], coefs[1]);
        acc += FRACMUL(hist_r[1], coefs[2]);
        /* Save filter history for right speaker */
        hist_r[1] = acc;
        hist_r[0] = *di;
        *di++ = right;
        /* Now add the attenuated direct sound and write to outputs */
        buf[0][i] = FRACMUL(left, gain) + hist_r[1];
        buf[1][i] = FRACMUL(right, gain) + hist_l[1];

        /* Wrap delay line index if bigger than delay line size */
        if (di >= delay + 13*2)
            di = delay;
    }
    /* Write back local copies of data we've modified */
    crossfeed_data.index = di;
}
#endif /* DSP_HAVE_ASM_CROSSFEED */

/**
 * dsp_set_crossfeed(bool enable)
 *
 * !DSPPARAMSYNC
 * needs syncing with changes to the following dsp parameters:
 *  * dsp->stereo_mode (A)
 */
void dsp_set_crossfeed(bool enable)
{
    crossfeed_enabled = enable;
    AUDIO_DSP.apply_crossfeed = (enable && AUDIO_DSP.data.num_channels > 1)
                                    ? apply_crossfeed : NULL;
}

void dsp_set_crossfeed_direct_gain(int gain)
{
    crossfeed_data.gain = get_replaygain_int(gain * 10) << 7;
    /* If gain is negative, the calculation overflowed and we need to clamp */
    if (crossfeed_data.gain < 0)
        crossfeed_data.gain = 0x7fffffff;
}

/* Both gains should be below 0 dB */
void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
{
    int32_t *c = crossfeed_data.coefs;
    long scaler = get_replaygain_int(lf_gain * 10) << 7;

    cutoff = 0xffffffff/NATIVE_FREQUENCY*cutoff;
    hf_gain -= lf_gain;
    /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
     * point instead of shelf midpoint. This is for compatibility with the old
     * crossfeed shelf filter and should be removed if crossfeed settings are
     * ever made incompatible for any other good reason.
     */
    cutoff = fp_div(cutoff, get_replaygain_int(hf_gain*5), 24);
    filter_shelf_coefs(cutoff, hf_gain, false, c);
    /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
     * over 1 and can do this safely
     */
    c[0] = FRACMUL_SHL(c[0], scaler, 4);
    c[1] = FRACMUL_SHL(c[1], scaler, 4);
    c[2] <<= 4;
}

/* Apply a constant gain to the samples (e.g., for ReplayGain).
 * Note that this must be called before the resampler.
 */
#ifndef DSP_HAVE_ASM_APPLY_GAIN
static void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
{
    const int32_t gain = data->gain;
    int ch;

    for (ch = 0; ch < data->num_channels; ch++)
    {
        int32_t *d = buf[ch];
        int i;

        for (i = 0; i < count; i++)
            d[i] = FRACMUL_SHL(d[i], gain, 8);
    }
}
#endif /* DSP_HAVE_ASM_APPLY_GAIN */

/* Combine all gains to a global gain. */
static void set_gain(struct dsp_config *dsp)
{
    /* gains are in S7.24 format */
    dsp->data.gain = DEFAULT_GAIN;

    /* Replay gain not relevant to voice */
    if (dsp == &AUDIO_DSP && replaygain)
    {
        dsp->data.gain = replaygain;
    }

    if (dsp->eq_process && eq_precut)
    {
        dsp->data.gain = fp_mul(dsp->data.gain, eq_precut, 24);
    }

#ifdef HAVE_SW_VOLUME_CONTROL
    if (global_settings.volume < SW_VOLUME_MAX ||
        global_settings.volume > SW_VOLUME_MIN)
    {
        int vol_gain = get_replaygain_int(global_settings.volume * 100);
        dsp->data.gain = (long) (((int64_t) dsp->data.gain * vol_gain) >> 24);
    }
#endif

    if (dsp->data.gain == DEFAULT_GAIN)
    {
        dsp->data.gain = 0;
    }
    else
    {
        dsp->data.gain >>= 1;   /* convert gain to S8.23 format */
    }

    dsp->apply_gain = dsp->data.gain != 0 ? dsp_apply_gain : NULL;
}

/**
 * Update the amount to cut the audio before applying the equalizer.
 *
 * @param precut to apply in decibels (multiplied by 10)
 */
void dsp_set_eq_precut(int precut)
{
    eq_precut = get_replaygain_int(precut * -10);
    set_gain(&AUDIO_DSP);
}

/**
 * Synchronize the equalizer filter coefficients with the global settings.
 *
 * @param band the equalizer band to synchronize
 */
void dsp_set_eq_coefs(int band)
{
    const int *setting;
    long gain;
    unsigned long cutoff, q;

    /* Adjust setting pointer to the band we actually want to change */
    setting = &global_settings.eq_band0_cutoff + (band * 3);

    /* Convert user settings to format required by coef generator functions */
    cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
    q = *setting++;
    gain = *setting++;

    if (q == 0)
        q = 1;

    /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
       which it should be, since we're executed from the main thread. */

    /* Assume a band is disabled if the gain is zero */
    if (gain == 0)
    {
        eq_data.enabled[band] = 0;
    }
    else
    {
        if (band == 0)
            eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
        else if (band == 4)
            eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
        else
            eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);

        eq_data.enabled[band] = 1;
    }
}

/* Apply EQ filters to those bands that have got it switched on. */
static void eq_process(int count, int32_t *buf[])
{
    static const int shifts[] =
    {
        EQ_SHELF_SHIFT,  /* low shelf  */
        EQ_PEAK_SHIFT,   /* peaking    */
        EQ_PEAK_SHIFT,   /* peaking    */
        EQ_PEAK_SHIFT,   /* peaking    */
        EQ_SHELF_SHIFT,  /* high shelf */
    };
    unsigned int channels = AUDIO_DSP.data.num_channels;
    int i;

    /* filter configuration currently is 1 low shelf filter, 3 band peaking
       filters and 1 high shelf filter, in that order. we need to know this
       so we can choose the correct shift factor.
     */
    for (i = 0; i < 5; i++)
    {
        if (!eq_data.enabled[i])
            continue;
        eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
    }
}

/**
 * Use to enable the equalizer.
 *
 * @param enable true to enable the equalizer
 */
void dsp_set_eq(bool enable)
{
    AUDIO_DSP.eq_process = enable ? eq_process : NULL;
    set_gain(&AUDIO_DSP);
}

static void dsp_set_stereo_width(int value)
{
    long width, straight, cross;

    width = value * 0x7fffff / 100;

    if (value <= 100)
    {
        straight = (0x7fffff + width) / 2;
        cross = straight - width;
    }
    else
    {
        /* straight = (1 + width) / (2 * width) */
        straight = ((int64_t)(0x7fffff + width) << 22) / width;
        cross = straight - 0x7fffff;
    }

    dsp_sw_gain  = straight << 8;
    dsp_sw_cross = cross << 8;
}

/**
 * Implements the different channel configurations and stereo width.
 */

/* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
 * completeness. */
#if 0
static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
{
    /* The channels are each just themselves */
    (void)count; (void)buf;
}
#endif

#ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
static void channels_process_sound_chan_mono(int count, int32_t *buf[])
{
    int32_t *sl = buf[0], *sr = buf[1];

    while (count-- > 0)
    {
        int32_t lr = *sl/2 + *sr/2;
        *sl++ = lr;
        *sr++ = lr;
    }
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */

#ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
static void channels_process_sound_chan_custom(int count, int32_t *buf[])
{
    const int32_t gain  = dsp_sw_gain;
    const int32_t cross = dsp_sw_cross;
    int32_t *sl = buf[0], *sr = buf[1];

    while (count-- > 0)
    {
        int32_t l = *sl;
        int32_t r = *sr;
        *sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
        *sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
    }
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */

static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
{
    /* Just copy over the other channel */
    memcpy(buf[1], buf[0], count * sizeof (*buf));
}

static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
{
    /* Just copy over the other channel */
    memcpy(buf[0], buf[1], count * sizeof (*buf));
}

#ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
{
    int32_t *sl = buf[0], *sr = buf[1];

    while (count-- > 0)
    {
        int32_t ch = *sl/2 - *sr/2;
        *sl++ = ch;
        *sr++ = -ch;
    }
}
#endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */

static void dsp_set_channel_config(int value)
{
    static const channels_process_fn_type channels_process_functions[] =
    {
        /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
        [SOUND_CHAN_STEREO]     = NULL,
        [SOUND_CHAN_MONO]       = channels_process_sound_chan_mono,
        [SOUND_CHAN_CUSTOM]     = channels_process_sound_chan_custom,
        [SOUND_CHAN_MONO_LEFT]  = channels_process_sound_chan_mono_left,
        [SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
        [SOUND_CHAN_KARAOKE]    = channels_process_sound_chan_karaoke,
    };

    if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
        AUDIO_DSP.stereo_mode == STEREO_MONO)
    {
        value = SOUND_CHAN_STEREO;
    }

    /* This doesn't apply to voice */
    channels_mode = value;
    AUDIO_DSP.channels_process = channels_process_functions[value];
}

#if CONFIG_CODEC == SWCODEC

#ifdef HAVE_SW_TONE_CONTROLS
static void set_tone_controls(void)
{
    filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
                         0xffffffff/NATIVE_FREQUENCY*3500,
                         bass, treble, -prescale,
                         AUDIO_DSP.tone_filter.coefs);
    /* Sync the voice dsp coefficients */
    memcpy(&VOICE_DSP.tone_filter.coefs, AUDIO_DSP.tone_filter.coefs,
           sizeof (VOICE_DSP.tone_filter.coefs));
}
#endif

/* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
 * code directly.
 */
int dsp_callback(int msg, intptr_t param)
{
    switch (msg)
    {
#ifdef HAVE_SW_TONE_CONTROLS
    case DSP_CALLBACK_SET_PRESCALE:
        prescale = param;
        set_tone_controls();
        break;
    /* prescaler is always set after calling any of these, so we wait with
     * calculating coefs until the above case is hit.
     */
    case DSP_CALLBACK_SET_BASS:
        bass = param;
        break;
    case DSP_CALLBACK_SET_TREBLE:
        treble = param;
        break;
#ifdef HAVE_SW_VOLUME_CONTROL
    case DSP_CALLBACK_SET_SW_VOLUME:
        set_gain(&AUDIO_DSP);
        break;
#endif
#endif
    case DSP_CALLBACK_SET_CHANNEL_CONFIG:
        dsp_set_channel_config(param);
        break;
    case DSP_CALLBACK_SET_STEREO_WIDTH:
        dsp_set_stereo_width(param);
        break;
    default:
        break;
    }
    return 0;
}
#endif

/* Process and convert src audio to dst based on the DSP configuration,
 * reading count number of audio samples. dst is assumed to be large
 * enough; use dsp_output_count() to get the required number. src is an
 * array of pointers; for mono and interleaved stereo, it contains one
 * pointer to the start of the audio data and the other is ignored; for
 * non-interleaved stereo, it contains two pointers, one for each audio
 * channel. Returns number of bytes written to dst.
 */
int dsp_process(struct dsp_config *dsp, char *dst, const char *src[], int count)
{
    int32_t *tmp[2];
    static long last_yield;
    long tick;
    int written = 0;

#if defined(CPU_COLDFIRE)
    /* set emac unit for dsp processing, and save old macsr, we're running in
       codec thread context at this point, so can't clobber it */
    unsigned long old_macsr = coldfire_get_macsr();
    coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
#endif

    if (new_gain)
        dsp_set_replaygain(); /* Gain has changed */

    /* Perform at least one yield before starting */
    last_yield = current_tick;
    yield();

    /* Testing function pointers for NULL is preferred since the pointer
       will be preloaded to be used for the call if not. */
    while (count > 0)
    {
        int samples = MIN(sample_buf_count/2, count);
        count -= samples;

        dsp->input_samples(samples, src, tmp);

        if (dsp->tdspeed_active)
            samples = tdspeed_doit(tmp, samples);
        
        int chunk_offset = 0;
        while (samples > 0)
        {
            int32_t *t2[2];
            t2[0] = tmp[0]+chunk_offset;
            t2[1] = tmp[1]+chunk_offset;

            int chunk = MIN(sample_buf_count/2, samples);
            chunk_offset += chunk;
            samples -= chunk;

            if (dsp->apply_gain)
                dsp->apply_gain(chunk, &dsp->data, t2);

            if (dsp->resample && (chunk = resample(dsp, chunk, t2)) <= 0)
                break; /* I'm pretty sure we're downsampling here */

            if (dsp->apply_crossfeed)
                dsp->apply_crossfeed(chunk, t2);

            if (dsp->eq_process)
                dsp->eq_process(chunk, t2);

#ifdef HAVE_SW_TONE_CONTROLS
            if ((bass | treble) != 0)
                eq_filter(t2, &dsp->tone_filter, chunk,
                      dsp->data.num_channels, FILTER_BISHELF_SHIFT);
#endif

            if (dsp->channels_process)
                dsp->channels_process(chunk, t2);
            
            if (dsp->compressor_process)
                dsp->compressor_process(chunk, t2);

            dsp->output_samples(chunk, &dsp->data, (const int32_t **)t2, (int16_t *)dst);

            written += chunk;
            dst += chunk * sizeof (int16_t) * 2;

            /* yield at least once each tick */
            tick = current_tick;
            if (TIME_AFTER(tick, last_yield))
            {
                last_yield = tick;
                yield();
            }
        }
    }

#if defined(CPU_COLDFIRE)
    /* set old macsr again */
    coldfire_set_macsr(old_macsr);
#endif
    return written;
}

/* Given count number of input samples, calculate the maximum number of
 * samples of output data that would be generated (the calculation is not
 * entirely exact and rounds upwards to be on the safe side; during
 * resampling, the number of samples generated depends on the current state
 * of the resampler).
 */
/* dsp_input_size MUST be called afterwards */
int dsp_output_count(struct dsp_config *dsp, int count)
{
    if (dsp->tdspeed_active)
        count = tdspeed_est_output_size();
    if (dsp->resample)
    {
        count = (int)(((unsigned long)count * NATIVE_FREQUENCY
                    + (dsp->frequency - 1)) / dsp->frequency);
    }

    /* Now we have the resampled sample count which must not exceed
     * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
     * must call dsp_input_count() to get the correct input sample
     * count.
     */
    if (count > RESAMPLE_BUF_RIGHT_CHANNEL)
        count = RESAMPLE_BUF_RIGHT_CHANNEL;
        
    return count;
}

/* Given count output samples, calculate number of input samples
 * that would be consumed in order to fill the output buffer.
 */
int dsp_input_count(struct dsp_config *dsp, int count)
{
    /* count is now the number of resampled input samples. Convert to
       original input samples. */
    if (dsp->resample)
    {
        /* Use the real resampling delta =
         * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
         * round towards zero to avoid buffer overflows. */
        count = (int)(((unsigned long)count *
                      dsp->data.resample_data.delta) >> 16);
    }

    if (dsp->tdspeed_active)
        count = tdspeed_est_input_size(count);

    return count;
}

static void dsp_set_gain_var(long *var, long value)
{
    *var = value;
    new_gain = true;
}

static void dsp_update_functions(struct dsp_config *dsp)
{
    sample_input_new_format(dsp);
    sample_output_new_format(dsp);
    if (dsp == &AUDIO_DSP)
        dsp_set_crossfeed(crossfeed_enabled);
}

intptr_t dsp_configure(struct dsp_config *dsp, int setting, intptr_t value)
{
    switch (setting)
    {
    case DSP_MYDSP:
        switch (value)
        {
        case CODEC_IDX_AUDIO:
            return (intptr_t)&AUDIO_DSP;
        case CODEC_IDX_VOICE:
            return (intptr_t)&VOICE_DSP;
        default:
            return (intptr_t)NULL;
        }

    case DSP_SET_FREQUENCY:
        memset(&dsp->data.resample_data, 0, sizeof (dsp->data.resample_data));
        /* Fall through!!! */
    case DSP_SWITCH_FREQUENCY:
        dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
        /* Account for playback speed adjustment when setting dsp->frequency
           if we're called from the main audio thread. Voice UI thread should
           not need this feature.
         */
        if (dsp == &AUDIO_DSP)
            dsp->frequency = pitch_ratio * dsp->codec_frequency / PITCH_SPEED_100;
        else
            dsp->frequency = dsp->codec_frequency;

        resampler_new_delta(dsp);
        tdspeed_setup(dsp);
        break;

    case DSP_SET_SAMPLE_DEPTH:
        dsp->sample_depth = value;

        if (dsp->sample_depth <= NATIVE_DEPTH)
        {
            dsp->frac_bits = WORD_FRACBITS;
            dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
            dsp->data.clip_max =  ((1 << WORD_FRACBITS) - 1);
            dsp->data.clip_min = -((1 << WORD_FRACBITS));
        }
        else
        {
            dsp->frac_bits = value;
            dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
            dsp->data.clip_max = (1 << value) - 1;
            dsp->data.clip_min = -(1 << value);
        }

        dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
        sample_input_new_format(dsp);
        dither_init(dsp);
        break;

    case DSP_SET_STEREO_MODE:
        dsp->stereo_mode = value;
        dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
        dsp_update_functions(dsp);
        tdspeed_setup(dsp);
        break;

    case DSP_RESET:
        dsp->stereo_mode = STEREO_NONINTERLEAVED;
        dsp->data.num_channels = 2;
        dsp->sample_depth = NATIVE_DEPTH;
        dsp->frac_bits = WORD_FRACBITS;
        dsp->sample_bytes = sizeof (int16_t);
        dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
        dsp->data.clip_max =  ((1 << WORD_FRACBITS) - 1);
        dsp->data.clip_min = -((1 << WORD_FRACBITS));
        dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;

        if (dsp == &AUDIO_DSP)
        {
            track_gain = 0;
            album_gain = 0;
            track_peak = 0;
            album_peak = 0;
            new_gain   = true;
        }

        dsp_update_functions(dsp);
        resampler_new_delta(dsp);
        tdspeed_setup(dsp);
        if (dsp == &AUDIO_DSP)
            release_gain = UNITY;
        break;

    case DSP_FLUSH:
        memset(&dsp->data.resample_data, 0,
               sizeof (dsp->data.resample_data));
        resampler_new_delta(dsp);
        dither_init(dsp);
        tdspeed_setup(dsp);
        if (dsp == &AUDIO_DSP)
            release_gain = UNITY;
        break;

    case DSP_SET_TRACK_GAIN:
        if (dsp == &AUDIO_DSP)
            dsp_set_gain_var(&track_gain, value);
        break;

    case DSP_SET_ALBUM_GAIN:
        if (dsp == &AUDIO_DSP)
            dsp_set_gain_var(&album_gain, value);
        break;

    case DSP_SET_TRACK_PEAK:
        if (dsp == &AUDIO_DSP)
            dsp_set_gain_var(&track_peak, value);
        break;

    case DSP_SET_ALBUM_PEAK:
        if (dsp == &AUDIO_DSP)
            dsp_set_gain_var(&album_peak, value);
        break;

    default:
        return 0;
    }

    return 1;
}

void dsp_set_replaygain(void)
{
    long gain = 0;

    new_gain = false;

    if ((global_settings.replaygain_type != REPLAYGAIN_OFF) ||
            global_settings.replaygain_noclip)
    {
        bool track_mode = get_replaygain_mode(track_gain != 0,
            album_gain != 0) == REPLAYGAIN_TRACK;
        long peak = (track_mode || !album_peak) ? track_peak : album_peak;

        if (global_settings.replaygain_type != REPLAYGAIN_OFF)
        {
            gain = (track_mode || !album_gain) ? track_gain : album_gain;

            if (global_settings.replaygain_preamp)
            {
                long preamp = get_replaygain_int(
                    global_settings.replaygain_preamp * 10);

                gain = (long) (((int64_t) gain * preamp) >> 24);
            }
        }

        if (gain == 0)
        {
            /* So that noclip can work even with no gain information. */
            gain = DEFAULT_GAIN;
        }

        if (global_settings.replaygain_noclip && (peak != 0)
            && ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
        {
            gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
        }

        if (gain == DEFAULT_GAIN)
        {
            /* Nothing to do, disable processing. */
            gain = 0;
        }
    }

    /* Store in S7.24 format to simplify calculations. */
    replaygain = gain;
    set_gain(&AUDIO_DSP);
}

/** SET COMPRESSOR
 *  Called by the menu system to configure the compressor process */
void dsp_set_compressor(int c_threshold, int c_ratio, int c_gain,
                        int c_knee, int c_release)
{
    bool changed = false;
    bool active = (c_threshold < 0);
    const int comp_ratio[] = {2, 4, 6, 10, 0};
    int  new_ratio = comp_ratio[c_ratio];
    bool new_knee = (c_knee == 1);
    int  new_release = c_release * NATIVE_FREQUENCY / 1000;
    
    if (c_menu.threshold != c_threshold)
    {
        changed = true;
        c_menu.threshold = c_threshold;
        logf("   Compressor Threshold: %d dB\tEnabled: %s",
            c_menu.threshold, active ? "Yes" : "No");
    }

    if (c_menu.ratio != new_ratio)
    {
        changed = true;
        c_menu.ratio = new_ratio;
        if (c_menu.ratio)
        {
            logf("   Compressor Ratio: %d:1", c_menu.ratio);
        }
        else
        {
            logf("   Compressor Ratio: Limit");
        }
    }
    
    if (c_menu.gain != c_gain)
    {
        changed = true;
        c_menu.gain = c_gain;
        if (c_menu.gain >= 0)
        {
            logf("   Compressor Makeup Gain: %d dB", c_menu.gain);
        }
        else
        {
            logf("   Compressor Makeup Gain: Auto");
        }
    }
    
    if (c_menu.soft_knee != new_knee)
    {
        changed = true;
        c_menu.soft_knee = new_knee;
        logf("   Compressor Knee: %s", c_menu.soft_knee==1?"Soft":"Hard");
    }
    
    if (c_menu.release != new_release)
    {
        changed = true;
        c_menu.release = new_release;
        logf("   Compressor Release: %d", c_menu.release);
    }

    if (changed && active)
    {
        /* configure variables for compressor operation */
        int i;
        const int32_t db[] ={0x000000,   /* positive db equivalents in S15.16 format */
         0x241FA4, 0x1E1A5E, 0x1A94C8, 0x181518, 0x1624EA, 0x148F82, 0x1338BD, 0x120FD2,
         0x1109EB, 0x101FA4, 0x0F4BB6, 0x0E8A3C, 0x0DD840, 0x0D3377, 0x0C9A0E, 0x0C0A8C,
         0x0B83BE, 0x0B04A5, 0x0A8C6C, 0x0A1A5E, 0x09ADE1, 0x094670, 0x08E398, 0x0884F6,
         0x082A30, 0x07D2FA, 0x077F0F, 0x072E31, 0x06E02A, 0x0694C8, 0x064BDF, 0x060546,
         0x05C0DA, 0x057E78, 0x053E03, 0x04FF5F, 0x04C273, 0x048726, 0x044D64, 0x041518,
         0x03DE30, 0x03A89B, 0x037448, 0x03412A, 0x030F32, 0x02DE52, 0x02AE80, 0x027FB0,
         0x0251D6, 0x0224EA, 0x01F8E2, 0x01CDB4, 0x01A359, 0x0179C9, 0x0150FC, 0x0128EB,
         0x010190, 0x00DAE4, 0x00B4E1, 0x008F82, 0x006AC1, 0x004699, 0x002305};
        
        struct curve_point
        {
            int32_t db;     /* S15.16 format */
            int32_t offset; /* S15.16 format */
        } db_curve[5];
        
        /** Set up the shape of the compression curve first as decibel values*/
        /* db_curve[0] = bottom of knee
                   [1] = threshold
                   [2] = top of knee
                   [3] = 0 db input
                   [4] = ~+12db input (2 bits clipping overhead) */
        
        db_curve[1].db = c_menu.threshold << 16;
        if (c_menu.soft_knee)
        {
            /* bottom of knee is 3dB below the threshold for soft knee*/
            db_curve[0].db = db_curve[1].db - (3 << 16);
            /* top of knee is 3dB above the threshold for soft knee */
            db_curve[2].db = db_curve[1].db + (3 << 16);
            if (c_menu.ratio)
                /* offset = -3db * (ratio - 1) / ratio */
                db_curve[2].offset = (int32_t)((long long)(-3 << 16)
                    * (c_menu.ratio - 1) / c_menu.ratio);
            else
                /* offset = -3db for hard limit */
                db_curve[2].offset = (-3 << 16);
        }
        else
        {
            /* bottom of knee is at the threshold for hard knee */
            db_curve[0].db = c_menu.threshold << 16;
            /* top of knee is at the threshold for hard knee */
            db_curve[2].db = c_menu.threshold << 16;
            db_curve[2].offset = 0;
        }
        
        /* Calculate 0db and ~+12db offsets */
        db_curve[4].db = 0xC0A8C; /* db of 2 bits clipping */
        if (c_menu.ratio)
        {
            /* offset = threshold * (ratio - 1) / ratio */
            db_curve[3].offset = (int32_t)((long long)(c_menu.threshold << 16)
                * (c_menu.ratio - 1) / c_menu.ratio);
            db_curve[4].offset = (int32_t)((long long)-db_curve[4].db
                * (c_menu.ratio - 1) / c_menu.ratio) + db_curve[3].offset;
        }
        else
        {
            /* offset = threshold for hard limit */
            db_curve[3].offset = (c_menu.threshold << 16);
            db_curve[4].offset = -db_curve[4].db + db_curve[3].offset;
        }
        
        /** Now set up the comp_curve table with compression offsets in the form
            of gain factors in S7.24 format */
        /* comp_curve[0] is 0 (-infinity db) input */
        comp_curve[0] = UNITY;
        /* comp_curve[1 to 63] are intermediate compression values corresponding
           to the 6 MSB of the input values of a non-clipped signal */
        for (i = 1; i < 64; i++)
        {
            /* db constants are stored as positive numbers;
               make them negative here */
            int32_t this_db = -db[i];
            
            /* no compression below the knee */
            if (this_db <= db_curve[0].db)
                comp_curve[i] = UNITY;
            
            /* if soft knee and below top of knee,
               interpolate along soft knee slope */
            else if (c_menu.soft_knee && (this_db <= db_curve[2].db))
                comp_curve[i] = fp_factor(fp_mul(
                    ((this_db - db_curve[0].db) / 6),
                    db_curve[2].offset, 16), 16) << 8;
            
            /* interpolate along ratio slope above the knee */
            else
                comp_curve[i] = fp_factor(fp_mul(
                    fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
                    db_curve[3].offset, 16), 16) << 8;
        }
        /* comp_curve[64] is the compression level of a maximum level,
           non-clipped signal */
        comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
        
        /* comp_curve[65] is the compression level of a maximum level,
           clipped signal */
        comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
        
#if defined(SIMULATOR) && defined(LOGF_ENABLE)
        logf("\n   *** Compression Offsets ***");
        /* some settings for display only, not used in calculations */
        db_curve[0].offset = 0;
        db_curve[1].offset = 0;
        db_curve[3].db = 0;
        
        for (i = 0; i <= 4; i++)
        {
            logf("Curve[%d]: db: % 6.2f\toffset: % 6.2f", i,
                (float)db_curve[i].db / (1 << 16),
                (float)db_curve[i].offset / (1 << 16));
        }
        
        logf("\nGain factors:");
        for (i = 1; i <= 65; i++)
        {
            debugf("%02d: %.6f  ", i, (float)comp_curve[i] / UNITY);
            if (i % 4 == 0) debugf("\n");
        }
        debugf("\n");
#endif
        
        /* if using auto peak, then makeup gain is max offset - .1dB headroom */
        int32_t db_makeup = (c_menu.gain == -1) ?
            -(db_curve[3].offset) - 0x199A : c_menu.gain << 16;
        comp_makeup_gain = fp_factor(db_makeup, 16) << 8;
        logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);

        /* calculate per-sample gain change a rate of 10db over release time */
        comp_rel_slope = 0xAF0BB2 / c_menu.release;
        logf("Release slope:\t%.6f", (float)comp_rel_slope / UNITY);
        
        release_gain = UNITY;
    }
    
    /* enable/disable the compressor */
    AUDIO_DSP.compressor_process = active ? compressor_process : NULL;
}

/** GET COMPRESSION GAIN
 *  Returns the required gain factor in S7.24 format in order to compress the
 *  sample in accordance with the compression curve.  Always 1 or less.
 */
static inline int32_t get_compression_gain(int32_t sample)
{
    const int frac_bits_offset = AUDIO_DSP.frac_bits - 15;
    
    /* sample must be positive */
    if (sample < 0)
        sample = -(sample + 1);
        
    /* shift sample into 15 frac bit range */
    if (frac_bits_offset > 0)
        sample >>= frac_bits_offset;
    if (frac_bits_offset < 0)
        sample <<= -frac_bits_offset;
    
    /* normal case: sample isn't clipped */
    if (sample < (1 << 15))
    {
        /* index is 6 MSB, rem is 9 LSB */
        int index = sample >> 9;
        int32_t rem = (sample & 0x1FF) << 22;
        
        /* interpolate from the compression curve:
            higher gain - ((rem / (1 << 31)) * (higher gain - lower gain)) */
        return comp_curve[index] - (FRACMUL(rem,
            (comp_curve[index] - comp_curve[index + 1])));
    }
    /* sample is somewhat clipped, up to 2 bits of overhead */
    if (sample < (1 << 17))
    {
        /* straight interpolation:
            higher gain - ((clipped portion of sample * 4/3
            / (1 << 31)) * (higher gain - lower gain)) */
        return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
            (comp_curve[64] - comp_curve[65])));
    }
    
    /* sample is too clipped, return invalid value */
    return -1;
}

/** COMPRESSOR PROCESS
 *  Changes the gain of the samples according to the compressor curve
 */
static void compressor_process(int count, int32_t *buf[])
{
    const int num_chan = AUDIO_DSP.data.num_channels;
    int32_t *in_buf[2] = {buf[0], buf[1]};
    
    while (count-- > 0)
    {
        int ch;
        /* use lowest (most compressed) gain factor of the output buffer
           sample pair for both samples (mono is also handled correctly here) */
        int32_t sample_gain = UNITY;
        for (ch = 0; ch < num_chan; ch++)
        {
            int32_t this_gain = get_compression_gain(*in_buf[ch]);
            if (this_gain < sample_gain)
                sample_gain = this_gain;
        }
        
        /* perform release slope; skip if no compression and no release slope */
        if ((sample_gain != UNITY) || (release_gain != UNITY))
        {
            /* if larger offset than previous slope, start new release slope */
            if ((sample_gain <= release_gain) && (sample_gain > 0))
            {
                release_gain = sample_gain;
            }
            else
            /* keep sloping towards unity gain (and ignore invalid value) */
            {
                release_gain += comp_rel_slope;
                if (release_gain > UNITY)
                {
                    release_gain = UNITY;
                }
            }
        }
        
        /* total gain factor is the product of release gain and makeup gain,
           but avoid computation if possible */
        int32_t total_gain = ((release_gain == UNITY) ? comp_makeup_gain :
            (comp_makeup_gain == UNITY) ? release_gain :
                FRACMUL_SHL(release_gain, comp_makeup_gain, 7));
        
        /* Implement the compressor: apply total gain factor (if any) to the
           output buffer sample pair/mono sample */
        if (total_gain != UNITY)
        {
            for (ch = 0; ch < num_chan; ch++)
            {
                *in_buf[ch] = FRACMUL_SHL(total_gain, *in_buf[ch], 7);
            }
        }
        in_buf[0]++;
        in_buf[1]++;
    }
}