summaryrefslogtreecommitdiffstats
path: root/apps/fixedpoint.c
blob: b65070e34812f76496b28db95e7291c1052b4103 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id: fixedpoint.c -1   $
 *
 * Copyright (C) 2006 Jens Arnold
 *
 * Fixed point library for plugins
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include "fixedpoint.h"
#include <stdlib.h>
#include <stdbool.h>

#ifndef BIT_N
#define BIT_N(n) (1U << (n))
#endif

/** TAKEN FROM ORIGINAL fixedpoint.h */
/* Inverse gain of circular cordic rotation in s0.31 format. */
static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */

/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
static const unsigned long atan_table[] = {
    0x1fffffff, /* +0.785398163 (or pi/4) */
    0x12e4051d, /* +0.463647609 */
    0x09fb385b, /* +0.244978663 */
    0x051111d4, /* +0.124354995 */
    0x028b0d43, /* +0.062418810 */
    0x0145d7e1, /* +0.031239833 */
    0x00a2f61e, /* +0.015623729 */
    0x00517c55, /* +0.007812341 */
    0x0028be53, /* +0.003906230 */
    0x00145f2e, /* +0.001953123 */
    0x000a2f98, /* +0.000976562 */
    0x000517cc, /* +0.000488281 */
    0x00028be6, /* +0.000244141 */
    0x000145f3, /* +0.000122070 */
    0x0000a2f9, /* +0.000061035 */
    0x0000517c, /* +0.000030518 */
    0x000028be, /* +0.000015259 */
    0x0000145f, /* +0.000007629 */
    0x00000a2f, /* +0.000003815 */
    0x00000517, /* +0.000001907 */
    0x0000028b, /* +0.000000954 */
    0x00000145, /* +0.000000477 */
    0x000000a2, /* +0.000000238 */
    0x00000051, /* +0.000000119 */
    0x00000028, /* +0.000000060 */
    0x00000014, /* +0.000000030 */
    0x0000000a, /* +0.000000015 */
    0x00000005, /* +0.000000007 */
    0x00000002, /* +0.000000004 */
    0x00000001, /* +0.000000002 */
    0x00000000, /* +0.000000001 */
    0x00000000, /* +0.000000000 */
};

/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
static const short sin_table[91] =
{
        0,   285,   571,   857,  1142,  1427,  1712,  1996,  2280,  2563,
     2845,  3126,  3406,  3685,  3963,  4240,  4516,  4790,  5062,  5334,
     5603,  5871,  6137,  6401,  6663,  6924,  7182,  7438,  7691,  7943,
     8191,  8438,  8682,  8923,  9161,  9397,  9630,  9860, 10086, 10310,
    10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
    12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
    14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
    15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
    16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
    16384
};

/**
 * Implements sin and cos using CORDIC rotation.
 *
 * @param phase has range from 0 to 0xffffffff, representing 0 and
 *        2*pi respectively.
 * @param cos return address for cos
 * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
 *         representing -1 and 1 respectively. 
 */
long fsincos(unsigned long phase, long *cos) 
{
    int32_t x, x1, y, y1;
    unsigned long z, z1;
    int i;

    /* Setup initial vector */
    x = cordic_circular_gain;
    y = 0;
    z = phase;

    /* The phase has to be somewhere between 0..pi for this to work right */
    if (z < 0xffffffff / 4) {
        /* z in first quadrant, z += pi/2 to correct */
        x = -x;
        z += 0xffffffff / 4;
    } else if (z < 3 * (0xffffffff / 4)) {
        /* z in third quadrant, z -= pi/2 to correct */
        z -= 0xffffffff / 4;
    } else {
        /* z in fourth quadrant, z -= 3pi/2 to correct */
        x = -x;
        z -= 3 * (0xffffffff / 4);
    }

    /* Each iteration adds roughly 1-bit of extra precision */
    for (i = 0; i < 31; i++) {
        x1 = x >> i;
        y1 = y >> i;
        z1 = atan_table[i];

        /* Decided which direction to rotate vector. Pivot point is pi/2 */
        if (z >= 0xffffffff / 4) {
            x -= y1;
            y += x1;
            z -= z1;
        } else {
            x += y1;
            y -= x1;
            z += z1;
        }
    }

    if (cos)
        *cos = x;

    return y;
}

/**
 * Fixed point square root via Newton-Raphson.
 * @param x square root argument.
 * @param fracbits specifies number of fractional bits in argument.
 * @return Square root of argument in same fixed point format as input.
 *
 * This routine has been modified to run longer for greater precision,
 * but cuts calculation short if the answer is reached sooner.  In
 * general, the closer x is to 1, the quicker the calculation. 
 */
long fsqrt(long x, unsigned int fracbits)
{
    long b = x/2 + BIT_N(fracbits); /* initial approximation */
    long c;
    unsigned n;
    const unsigned iterations = 8;
    
    for (n = 0; n < iterations; ++n)
    {
        c = DIV64(x, b, fracbits);
        if (c == b) break;
        b = (b + c)/2;
    }

    return b;
}

/**
 * Fixed point sinus using a lookup table
 * don't forget to divide the result by 16384 to get the actual sinus value
 * @param val sinus argument in degree
 * @return sin(val)*16384
 */
long sin_int(int val)
{
    val = (val+360)%360;
    if (val < 181)
    {
        if (val < 91)/* phase 0-90 degree */
            return (long)sin_table[val];
        else/* phase 91-180 degree */
            return (long)sin_table[180-val];
    }
    else
    {
        if (val < 271)/* phase 181-270 degree */
            return -(long)sin_table[val-180];
        else/* phase 270-359 degree */
            return -(long)sin_table[360-val];
    }
    return 0;
}

/**
 * Fixed point cosinus using a lookup table
 * don't forget to divide the result by 16384 to get the actual cosinus value
 * @param val sinus argument in degree
 * @return cos(val)*16384
 */
long cos_int(int val)
{
    val = (val+360)%360;
    if (val < 181)
    {
        if (val < 91)/* phase 0-90 degree */
            return (long)sin_table[90-val];
        else/* phase 91-180 degree */
            return -(long)sin_table[val-90];
    }
    else
    {
        if (val < 271)/* phase 181-270 degree */
            return -(long)sin_table[270-val];
        else/* phase 270-359 degree */
            return (long)sin_table[val-270];
    }
    return 0;
}

/**
 * Fixed-point natural log
 * taken from http://www.quinapalus.com/efunc.html
 *  "The code assumes integers are at least 32 bits long. The (positive)
 *   argument and the result of the function are both expressed as fixed-point
 *   values with 16 fractional bits, although intermediates are kept with 28
 *   bits of precision to avoid loss of accuracy during shifts."
 */

long flog(int x) {
    long t,y;

    y=0xa65af;
    if(x<0x00008000) x<<=16,              y-=0xb1721;
    if(x<0x00800000) x<<= 8,              y-=0x58b91;
    if(x<0x08000000) x<<= 4,              y-=0x2c5c8;
    if(x<0x20000000) x<<= 2,              y-=0x162e4;
    if(x<0x40000000) x<<= 1,              y-=0x0b172;
    t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd;
    t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920;
    t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27;
    t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85;
    t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1;
    t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8;
    t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe;
    x=0x80000000-x;
    y-=x>>15;
    return y;
}

/** MODIFIED FROM replaygain.c */
/* These math routines have 64-bit internal precision to avoid overflows.
 * Arguments and return values are 32-bit (long) precision.
 */
 
#define FP_MUL64(x, y) (((x) * (y)) >> (fracbits))
#define FP_DIV64(x, y) (((x) << (fracbits)) / (y))

static long long fp_exp10(long long x, unsigned int fracbits);
static long long fp_log10(long long n, unsigned int fracbits);

/* constants in fixed point format, 28 fractional bits */
#define FP28_LN2        (186065279LL)   /* ln(2)        */
#define FP28_LN2_INV    (387270501LL)   /* 1/ln(2)      */
#define FP28_EXP_ZERO   (44739243LL)    /* 1/6          */
#define FP28_EXP_ONE    (-745654LL)     /* -1/360       */
#define FP28_EXP_TWO    (12428LL)       /* 1/21600      */
#define FP28_LN10       (618095479LL)   /* ln(10)       */
#define FP28_LOG10OF2   (80807124LL)    /* log10(2)     */

#define TOL_BITS         2              /* log calculation tolerance */


/* The fpexp10 fixed point math routine is based
 * on oMathFP by Dan Carter (http://orbisstudios.com).
 */

/** FIXED POINT EXP10
 * Return 10^x as FP integer.  Argument is FP integer.
 */
static long long fp_exp10(long long x, unsigned int fracbits)
{
    long long k;
    long long z;
    long long R;
    long long xp;
    
    /* scale constants */
    const long long fp_one      = (1 << fracbits);
    const long long fp_half     = (1 << (fracbits - 1));
    const long long fp_two      = (2 << fracbits);
    const long long fp_mask     = (fp_one - 1);
    const long long fp_ln2_inv  = (FP28_LN2_INV     >> (28 - fracbits));
    const long long fp_ln2      = (FP28_LN2         >> (28 - fracbits));
    const long long fp_ln10     = (FP28_LN10        >> (28 - fracbits));
    const long long fp_exp_zero = (FP28_EXP_ZERO    >> (28 - fracbits));
    const long long fp_exp_one  = (FP28_EXP_ONE     >> (28 - fracbits));
    const long long fp_exp_two  = (FP28_EXP_TWO     >> (28 - fracbits));
    
    /* exp(0) = 1 */
    if (x == 0)
    {
        return fp_one;
    }
    
    /* convert from base 10 to base e */
    x = FP_MUL64(x, fp_ln10);
    
    /* calculate exp(x) */
    k = (FP_MUL64(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask;
    
    if (x < 0)
    {
        k = -k;
    }
    
    x -= FP_MUL64(k, fp_ln2);
    z = FP_MUL64(x, x);
    R = fp_two + FP_MUL64(z, fp_exp_zero + FP_MUL64(z, fp_exp_one
        + FP_MUL64(z, fp_exp_two)));
    xp = fp_one + FP_DIV64(FP_MUL64(fp_two, x), R - x);
    
    if (k < 0)
    {
        k = fp_one >> (-k >> fracbits);
    }
    else
    {
        k = fp_one << (k >> fracbits);
    }
    
    return FP_MUL64(k, xp);
}


/** FIXED POINT LOG10
 * Return log10(x) as FP integer.  Argument is FP integer.
 */
static long long fp_log10(long long n, unsigned int fracbits)
{
    /* Calculate log2 of argument */

    long long log2, frac;
    const long long fp_one  = (1 << fracbits);
    const long long fp_two  = (2 << fracbits);
    const long tolerance    = (1 << ((fracbits / 2) + 2));
    
    if (n <=0) return FP_NEGINF;
    log2 = 0;

    /* integer part */
    while (n < fp_one)
    {
        log2 -= fp_one;
        n <<= 1;
    }
    while (n >= fp_two)
    {
        log2 += fp_one;
        n >>= 1;
    }
    
    /* fractional part */
    frac = fp_one;
    while (frac > tolerance)
    {
        frac >>= 1;
        n = FP_MUL64(n, n);
        if (n >= fp_two)
        {
            n >>= 1;
            log2 += frac;
        }
    }
    
    /* convert log2 to log10 */
    return FP_MUL64(log2, (FP28_LOG10OF2 >> (28 - fracbits)));
}


/** CONVERT FACTOR TO DECIBELS */
long fp_decibels(unsigned long factor, unsigned int fracbits)
{
    long long decibels;
    long long f = (long long)factor;
    bool neg;
    
    /* keep factor in signed long range */
    if (f >= (1LL << 31))
        f = (1LL << 31) - 1;
    
    /* decibels = 20 * log10(factor) */
    decibels = FP_MUL64((20LL << fracbits), fp_log10(f, fracbits));
    
    /* keep result in signed long range */
    if ((neg = (decibels < 0)))
        decibels = -decibels;
    if (decibels >= (1LL << 31))
        return neg ? FP_NEGINF : FP_INF;
    
    return neg ? (long)-decibels : (long)decibels;
}


/** CONVERT DECIBELS TO FACTOR */
long fp_factor(long decibels, unsigned int fracbits)
{
    bool neg;
    long long factor;
    long long db = (long long)decibels;
    
    /* if decibels is 0, factor is 1 */
    if (db == 0)
        return (1L << fracbits);
    
    /* calculate for positive decibels only */
    if ((neg = (db < 0)))
        db = -db;
    
    /* factor = 10 ^ (decibels / 20) */
    factor = fp_exp10(FP_DIV64(db, (20LL << fracbits)), fracbits);
    
    /* keep result in signed long range, return 0 if very small */
    if (factor >= (1LL << 31))
    {
        if (neg)
            return 0;
        else
            return FP_INF;
    }
    
    /* if negative argument, factor is 1 / result */
    if (neg)
        factor = FP_DIV64((1LL << fracbits), factor);
        
    return (long)factor;
}