summaryrefslogtreecommitdiffstats
path: root/apps/plugins/imageviewer/jpeg/jpeg_decoder.c
blob: c90bff87a4c93b5ae2ae6f031aa1221e96b9298f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
/***************************************************************************
*             __________               __   ___.
*   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
*   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
*   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
*   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
*                     \/            \/     \/    \/            \/
* $Id$
*
* JPEG image viewer
* (This is a real mess if it has to be coded in one single C file)
*
* File scrolling addition (C) 2005 Alexander Spyridakis
* Copyright (C) 2004 Jörg Hohensohn aka [IDC]Dragon
* Heavily borrowed from the IJG implementation (C) Thomas G. Lane
* Small & fast downscaling IDCT (C) 2002 by Guido Vollbeding  JPEGclub.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/

#include "plugin.h"

#include "jpeg_decoder.h"

/* for portability of below JPEG code */
#define MEMSET(p,v,c) rb->memset(p,v,c)
#define MEMCPY(d,s,c) rb->memcpy(d,s,c)
#define INLINE static inline
#define ENDIAN_SWAP16(n) n /* only for poor little endian machines */

/**************** begin JPEG code ********************/

INLINE unsigned range_limit(int value)
{
#if CONFIG_CPU == SH7034
    unsigned tmp;
    asm (  /* Note: Uses knowledge that only low byte of result is used */
        "mov     #-128,%[t]  \n"
        "sub     %[t],%[v]   \n"  /* value -= -128; equals value += 128; */
        "extu.b  %[v],%[t]   \n"
        "cmp/eq  %[v],%[t]   \n"  /* low byte == whole number ? */
        "bt      1f          \n"  /* yes: no overflow */
        "cmp/pz  %[v]        \n"  /* overflow: positive? */
        "subc    %[v],%[v]   \n"  /* %[r] now either 0 or 0xffffffff */
    "1:                      \n"
        : /* outputs */
        [v]"+r"(value),
        [t]"=&r"(tmp)
    );
    return value;
#elif defined(CPU_COLDFIRE)
    asm (  /* Note: Uses knowledge that only the low byte of the result is used */
        "add.l   #128,%[v]   \n"  /* value += 128; */
        "cmp.l   #255,%[v]   \n"  /* overflow? */
        "bls.b   1f          \n"  /* no: return value */
        "spl.b   %[v]        \n"  /* yes: set low byte to appropriate boundary */
    "1:                      \n"
        : /* outputs */
        [v]"+d"(value)
    );
    return value;
#elif defined(CPU_ARM)
    asm (  /* Note: Uses knowledge that only the low byte of the result is used */
        "add     %[v], %[v], #128    \n"  /* value += 128 */
        "cmp     %[v], #255          \n"  /* out of range 0..255? */
        "mvnhi   %[v], %[v], asr #31 \n"  /* yes: set all bits to ~(sign_bit) */
        : /* outputs */
        [v]"+r"(value)
    );
    return value;
#else
    value += 128;

    if ((unsigned)value <= 255)
        return value;

    if (value < 0)
        return 0;

    return 255;
#endif
}

/* IDCT implementation */


#define CONST_BITS 13
#define PASS1_BITS 2


/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#define FIX_0_298631336  2446 /* FIX(0.298631336) */
#define FIX_0_390180644  3196 /* FIX(0.390180644) */
#define FIX_0_541196100  4433 /* FIX(0.541196100) */
#define FIX_0_765366865  6270 /* FIX(0.765366865) */
#define FIX_0_899976223  7373 /* FIX(0.899976223) */
#define FIX_1_175875602  9633 /* FIX(1.175875602) */
#define FIX_1_501321110 12299 /* FIX(1.501321110) */
#define FIX_1_847759065 15137 /* FIX(1.847759065) */
#define FIX_1_961570560 16069 /* FIX(1.961570560) */
#define FIX_2_053119869 16819 /* FIX(2.053119869) */
#define FIX_2_562915447 20995 /* FIX(2.562915447) */
#define FIX_3_072711026 25172 /* FIX(3.072711026) */



/* Multiply an long variable by an long constant to yield an long result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#define MULTIPLY16(var,const)  (((short) (var)) * ((short) (const)))


/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result.  In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
/* #define DEQUANTIZE(coef,quantval)  (((int) (coef)) * (quantval)) */
#define DEQUANTIZE MULTIPLY16

/* Descale and correctly round an int value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) (((x) + (1l << ((n)-1))) >> (n))



/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*/
void idct1x1(unsigned char* p_byte, int* inptr, int* quantptr, int skip_line)
{
    (void)skip_line; /* unused */
    *p_byte = range_limit(inptr[0] * quantptr[0] >> 3);
}



/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 2x2 output block.
*/
void idct2x2(unsigned char* p_byte, int* inptr, int* quantptr, int skip_line)
{
    int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
    unsigned char* outptr;

    /* Pass 1: process columns from input, store into work array. */

    /* Column 0 */
    tmp4 = DEQUANTIZE(inptr[8*0], quantptr[8*0]);
    tmp5 = DEQUANTIZE(inptr[8*1], quantptr[8*1]);

    tmp0 = tmp4 + tmp5;
    tmp2 = tmp4 - tmp5;

    /* Column 1 */
    tmp4 = DEQUANTIZE(inptr[8*0+1], quantptr[8*0+1]);
    tmp5 = DEQUANTIZE(inptr[8*1+1], quantptr[8*1+1]);

    tmp1 = tmp4 + tmp5;
    tmp3 = tmp4 - tmp5;

    /* Pass 2: process 2 rows, store into output array. */

    /* Row 0 */
    outptr = p_byte;

    outptr[0] = range_limit((int) DESCALE(tmp0 + tmp1, 3));
    outptr[1] = range_limit((int) DESCALE(tmp0 - tmp1, 3));

    /* Row 1 */
    outptr = p_byte + skip_line;

    outptr[0] = range_limit((int) DESCALE(tmp2 + tmp3, 3));
    outptr[1] = range_limit((int) DESCALE(tmp2 - tmp3, 3));
}



/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 4x4 output block.
*/
void idct4x4(unsigned char* p_byte, int* inptr, int* quantptr, int skip_line)
{
    int tmp0, tmp2, tmp10, tmp12;
    int z1, z2, z3;
    int * wsptr;
    unsigned char* outptr;
    int ctr;
    int workspace[4*4]; /* buffers data between passes */

    /* Pass 1: process columns from input, store into work array. */

    wsptr = workspace;
    for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++)
    {
        /* Even part */

        tmp0 = DEQUANTIZE(inptr[8*0], quantptr[8*0]);
        tmp2 = DEQUANTIZE(inptr[8*2], quantptr[8*2]);

        tmp10 = (tmp0 + tmp2) << PASS1_BITS;
        tmp12 = (tmp0 - tmp2) << PASS1_BITS;

        /* Odd part */
        /* Same rotation as in the even part of the 8x8 LL&M IDCT */

        z2 = DEQUANTIZE(inptr[8*1], quantptr[8*1]);
        z3 = DEQUANTIZE(inptr[8*3], quantptr[8*3]);

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp0 = DESCALE(z1 + MULTIPLY16(z3, - FIX_1_847759065), CONST_BITS-PASS1_BITS);
        tmp2 = DESCALE(z1 + MULTIPLY16(z2, FIX_0_765366865), CONST_BITS-PASS1_BITS);

        /* Final output stage */

        wsptr[4*0] = (int) (tmp10 + tmp2);
        wsptr[4*3] = (int) (tmp10 - tmp2);
        wsptr[4*1] = (int) (tmp12 + tmp0);
        wsptr[4*2] = (int) (tmp12 - tmp0);
    }

    /* Pass 2: process 4 rows from work array, store into output array. */

    wsptr = workspace;
    for (ctr = 0; ctr < 4; ctr++)
    {
        outptr = p_byte + (ctr*skip_line);
        /* Even part */

        tmp0 = (int) wsptr[0];
        tmp2 = (int) wsptr[2];

        tmp10 = (tmp0 + tmp2) << CONST_BITS;
        tmp12 = (tmp0 - tmp2) << CONST_BITS;

        /* Odd part */
        /* Same rotation as in the even part of the 8x8 LL&M IDCT */

        z2 = (int) wsptr[1];
        z3 = (int) wsptr[3];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp0 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
        tmp2 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        /* Final output stage */

        outptr[0] = range_limit((int) DESCALE(tmp10 + tmp2,
            CONST_BITS+PASS1_BITS+3));
        outptr[3] = range_limit((int) DESCALE(tmp10 - tmp2,
            CONST_BITS+PASS1_BITS+3));
        outptr[1] = range_limit((int) DESCALE(tmp12 + tmp0,
            CONST_BITS+PASS1_BITS+3));
        outptr[2] = range_limit((int) DESCALE(tmp12 - tmp0,
            CONST_BITS+PASS1_BITS+3));

        wsptr += 4;     /* advance pointer to next row */
    }
}



/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
void idct8x8(unsigned char* p_byte, int* inptr, int* quantptr, int skip_line)
{
    long tmp0, tmp1, tmp2, tmp3;
    long tmp10, tmp11, tmp12, tmp13;
    long z1, z2, z3, z4, z5;
    int * wsptr;
    unsigned char* outptr;
    int ctr;
    int workspace[64];  /* buffers data between passes */

    /* Pass 1: process columns from input, store into work array. */
    /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
    /* furthermore, we scale the results by 2**PASS1_BITS. */

    wsptr = workspace;
    for (ctr = 8; ctr > 0; ctr--)
    {
    /* Due to quantization, we will usually find that many of the input
    * coefficients are zero, especially the AC terms.  We can exploit this
    * by short-circuiting the IDCT calculation for any column in which all
    * the AC terms are zero.  In that case each output is equal to the
    * DC coefficient (with scale factor as needed).
    * With typical images and quantization tables, half or more of the
    * column DCT calculations can be simplified this way.
    */

        if ((inptr[8*1] | inptr[8*2] | inptr[8*3]
           | inptr[8*4] | inptr[8*5] | inptr[8*6] | inptr[8*7]) == 0)
        {
            /* AC terms all zero */
            int dcval = DEQUANTIZE(inptr[8*0], quantptr[8*0]) << PASS1_BITS;

            wsptr[8*0] = wsptr[8*1] = wsptr[8*2] = wsptr[8*3] = wsptr[8*4]
                       = wsptr[8*5] = wsptr[8*6] = wsptr[8*7] = dcval;
            inptr++;      /* advance pointers to next column */
            quantptr++;
            wsptr++;
            continue;
        }

        /* Even part: reverse the even part of the forward DCT. */
        /* The rotator is sqrt(2)*c(-6). */

        z2 = DEQUANTIZE(inptr[8*2], quantptr[8*2]);
        z3 = DEQUANTIZE(inptr[8*6], quantptr[8*6]);

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
        tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        z2 = DEQUANTIZE(inptr[8*0], quantptr[8*0]);
        z3 = DEQUANTIZE(inptr[8*4], quantptr[8*4]);

        tmp0 = (z2 + z3) << CONST_BITS;
        tmp1 = (z2 - z3) << CONST_BITS;

        tmp10 = tmp0 + tmp3;
        tmp13 = tmp0 - tmp3;
        tmp11 = tmp1 + tmp2;
        tmp12 = tmp1 - tmp2;

        /* Odd part per figure 8; the matrix is unitary and hence its
           transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively. */

        tmp0 = DEQUANTIZE(inptr[8*7], quantptr[8*7]);
        tmp1 = DEQUANTIZE(inptr[8*5], quantptr[8*5]);
        tmp2 = DEQUANTIZE(inptr[8*3], quantptr[8*3]);
        tmp3 = DEQUANTIZE(inptr[8*1], quantptr[8*1]);

        z1 = tmp0 + tmp3;
        z2 = tmp1 + tmp2;
        z3 = tmp0 + tmp2;
        z4 = tmp1 + tmp3;
        z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

        tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
        tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
        tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
        tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
        z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
        z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
        z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
        z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

        z3 += z5;
        z4 += z5;

        tmp0 += z1 + z3;
        tmp1 += z2 + z4;
        tmp2 += z2 + z3;
        tmp3 += z1 + z4;

        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

        wsptr[8*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
        wsptr[8*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
        wsptr[8*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
        wsptr[8*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
        wsptr[8*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
        wsptr[8*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
        wsptr[8*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
        wsptr[8*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);

        inptr++; /* advance pointers to next column */
        quantptr++;
        wsptr++;
    }

    /* Pass 2: process rows from work array, store into output array. */
    /* Note that we must descale the results by a factor of 8 == 2**3, */
    /* and also undo the PASS1_BITS scaling. */

    wsptr = workspace;
    for (ctr = 0; ctr < 8; ctr++)
    {
        outptr = p_byte + (ctr*skip_line);
        /* Rows of zeroes can be exploited in the same way as we did with columns.
        * However, the column calculation has created many nonzero AC terms, so
        * the simplification applies less often (typically 5% to 10% of the time).
        * On machines with very fast multiplication, it's possible that the
        * test takes more time than it's worth.  In that case this section
        * may be commented out.
        */

#ifndef NO_ZERO_ROW_TEST
        if ((wsptr[1] | wsptr[2] | wsptr[3]
           | wsptr[4] | wsptr[5] | wsptr[6] | wsptr[7]) == 0)
        {
            /* AC terms all zero */
            unsigned char dcval = range_limit((int) DESCALE((long) wsptr[0],
                PASS1_BITS+3));

            outptr[0] = dcval;
            outptr[1] = dcval;
            outptr[2] = dcval;
            outptr[3] = dcval;
            outptr[4] = dcval;
            outptr[5] = dcval;
            outptr[6] = dcval;
            outptr[7] = dcval;

            wsptr += 8; /* advance pointer to next row */
            continue;
        }
#endif

        /* Even part: reverse the even part of the forward DCT. */
        /* The rotator is sqrt(2)*c(-6). */

        z2 = (long) wsptr[2];
        z3 = (long) wsptr[6];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
        tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        tmp0 = ((long) wsptr[0] + (long) wsptr[4]) << CONST_BITS;
        tmp1 = ((long) wsptr[0] - (long) wsptr[4]) << CONST_BITS;

        tmp10 = tmp0 + tmp3;
        tmp13 = tmp0 - tmp3;
        tmp11 = tmp1 + tmp2;
        tmp12 = tmp1 - tmp2;

        /* Odd part per figure 8; the matrix is unitary and hence its
        * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */

        tmp0 = (long) wsptr[7];
        tmp1 = (long) wsptr[5];
        tmp2 = (long) wsptr[3];
        tmp3 = (long) wsptr[1];

        z1 = tmp0 + tmp3;
        z2 = tmp1 + tmp2;
        z3 = tmp0 + tmp2;
        z4 = tmp1 + tmp3;
        z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

        tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
        tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
        tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
        tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
        z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
        z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
        z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
        z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

        z3 += z5;
        z4 += z5;

        tmp0 += z1 + z3;
        tmp1 += z2 + z4;
        tmp2 += z2 + z3;
        tmp3 += z1 + z4;

        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

        outptr[0] = range_limit((int) DESCALE(tmp10 + tmp3,
            CONST_BITS+PASS1_BITS+3));
        outptr[7] = range_limit((int) DESCALE(tmp10 - tmp3,
            CONST_BITS+PASS1_BITS+3));
        outptr[1] = range_limit((int) DESCALE(tmp11 + tmp2,
            CONST_BITS+PASS1_BITS+3));
        outptr[6] = range_limit((int) DESCALE(tmp11 - tmp2,
            CONST_BITS+PASS1_BITS+3));
        outptr[2] = range_limit((int) DESCALE(tmp12 + tmp1,
            CONST_BITS+PASS1_BITS+3));
        outptr[5] = range_limit((int) DESCALE(tmp12 - tmp1,
            CONST_BITS+PASS1_BITS+3));
        outptr[3] = range_limit((int) DESCALE(tmp13 + tmp0,
            CONST_BITS+PASS1_BITS+3));
        outptr[4] = range_limit((int) DESCALE(tmp13 - tmp0,
            CONST_BITS+PASS1_BITS+3));

        wsptr += 8; /* advance pointer to next row */
    }
}



/* JPEG decoder implementation */

/* Preprocess the JPEG JFIF file */
int process_markers(unsigned char* p_src, long size, struct jpeg* p_jpeg)
{
    unsigned char* p_bytes = p_src;
    int marker_size; /* variable length of marker segment */
    int i, j, n;
    int ret = 0; /* returned flags */

    p_jpeg->p_entropy_end = p_src + size;

    while (p_src < p_bytes + size)
    {
        if (*p_src++ != 0xFF) /* no marker? */
        {
            p_src--; /* it's image data, put it back */
            p_jpeg->p_entropy_data = p_src;
            break; /* exit marker processing */
        }

        switch (*p_src++)
        {
        case 0xFF: /* Fill byte */
            ret |= FILL_FF;
        case 0x00: /* Zero stuffed byte - entropy data */
            p_src--; /* put it back */
            continue;

        case 0xC0: /* SOF Huff  - Baseline DCT */
            {
                ret |= SOF0;
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */
                n = *p_src++; /* sample precision (= 8 or 12) */
                if (n != 8)
                {
                    return(-1); /* Unsupported sample precision */
                }
                p_jpeg->y_size = *p_src++ << 8; /* Highbyte */
                p_jpeg->y_size |= *p_src++; /* Lowbyte */
                p_jpeg->x_size = *p_src++ << 8; /* Highbyte */
                p_jpeg->x_size |= *p_src++; /* Lowbyte */

                n = (marker_size-2-6)/3;
                if (*p_src++ != n || (n != 1 && n != 3))
                {
                    return(-2); /* Unsupported SOF0 component specification */
                }
                for (i=0; i<n; i++)
                {
                    p_jpeg->frameheader[i].ID = *p_src++; /* Component info */
                    p_jpeg->frameheader[i].horizontal_sampling = *p_src >> 4;
                    p_jpeg->frameheader[i].vertical_sampling = *p_src++ & 0x0F;
                    p_jpeg->frameheader[i].quanttable_select = *p_src++;
                    if (p_jpeg->frameheader[i].horizontal_sampling > 2
                     || p_jpeg->frameheader[i].vertical_sampling > 2)
                    return -3; /* Unsupported SOF0 subsampling */
                }
                p_jpeg->blocks = n;
            }
            break;

        case 0xC1: /* SOF Huff  - Extended sequential DCT*/
        case 0xC2: /* SOF Huff  - Progressive DCT*/
        case 0xC3: /* SOF Huff  - Spatial (sequential) lossless*/
        case 0xC5: /* SOF Huff  - Differential sequential DCT*/
        case 0xC6: /* SOF Huff  - Differential progressive DCT*/
        case 0xC7: /* SOF Huff  - Differential spatial*/
        case 0xC8: /* SOF Arith - Reserved for JPEG extensions*/
        case 0xC9: /* SOF Arith - Extended sequential DCT*/
        case 0xCA: /* SOF Arith - Progressive DCT*/
        case 0xCB: /* SOF Arith - Spatial (sequential) lossless*/
        case 0xCD: /* SOF Arith - Differential sequential DCT*/
        case 0xCE: /* SOF Arith - Differential progressive DCT*/
        case 0xCF: /* SOF Arith - Differential spatial*/
            {
                return (-4); /* other DCT model than baseline not implemented */
            }

        case 0xC4: /* Define Huffman Table(s) */
            {
                unsigned char* p_temp;

                ret |= DHT;
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */

                p_temp = p_src;
                while (p_src < p_temp+marker_size-2-17) /* another table */
                {
                    int sum = 0;
                    i = *p_src & 0x0F; /* table index */
                    if (i > 1)
                    {
                        return (-5); /* Huffman table index out of range */
                    }
                    else if (*p_src++ & 0xF0) /* AC table */
                    {
                        for (j=0; j<16; j++)
                        {
                            sum += *p_src;
                            p_jpeg->hufftable[i].huffmancodes_ac[j] = *p_src++;
                        }
                        if(16 + sum > AC_LEN)
                            return -10; /* longer than allowed */

                        for (; j < 16 + sum; j++)
                            p_jpeg->hufftable[i].huffmancodes_ac[j] = *p_src++;
                    }
                    else /* DC table */
                    {
                        for (j=0; j<16; j++)
                        {
                            sum += *p_src;
                            p_jpeg->hufftable[i].huffmancodes_dc[j] = *p_src++;
                        }
                        if(16 + sum > DC_LEN)
                            return -11; /* longer than allowed */

                        for (; j < 16 + sum; j++)
                            p_jpeg->hufftable[i].huffmancodes_dc[j] = *p_src++;
                    }
                } /* while */
                p_src = p_temp+marker_size - 2; /* skip possible residue */
            }
            break;

        case 0xCC: /* Define Arithmetic coding conditioning(s) */
            return(-6); /* Arithmetic coding not supported */

        case 0xD8: /* Start of Image */
        case 0xD9: /* End of Image */
        case 0x01: /* for temp private use arith code */
            break; /* skip parameterless marker */


        case 0xDA: /* Start of Scan */
            {
                ret |= SOS;
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */

                n = (marker_size-2-1-3)/2;
                if (*p_src++ != n || (n != 1 && n != 3))
                {
                    return (-7); /* Unsupported SOS component specification */
                }
                for (i=0; i<n; i++)
                {
                    p_jpeg->scanheader[i].ID = *p_src++;
                    p_jpeg->scanheader[i].DC_select = *p_src >> 4;
                    p_jpeg->scanheader[i].AC_select = *p_src++ & 0x0F;
                }
                p_src += 3; /* skip spectral information */
            }
            break;

        case 0xDB: /* Define quantization Table(s) */
            {
                ret |= DQT;
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */
                n = (marker_size-2)/(QUANT_TABLE_LENGTH+1); /* # of tables */
                for (i=0; i<n; i++)
                {
                    int id = *p_src++; /* ID */
                    if (id >= 4)
                    {
                        return (-8); /* Unsupported quantization table */
                    }
                    /* Read Quantisation table: */
                    for (j=0; j<QUANT_TABLE_LENGTH; j++)
                        p_jpeg->quanttable[id][j] = *p_src++;
                }
            }
            break;

        case 0xDD: /* Define Restart Interval */
            {
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */
                p_jpeg->restart_interval = *p_src++ << 8; /* Highbyte */
                p_jpeg->restart_interval |= *p_src++; /* Lowbyte */
                p_src += marker_size-4; /* skip segment */
            }
            break;

        case 0xDC: /* Define Number of Lines */
        case 0xDE: /* Define Hierarchical progression */
        case 0xDF: /* Expand Reference Component(s) */
        case 0xE0: /* Application Field 0*/
        case 0xE1: /* Application Field 1*/
        case 0xE2: /* Application Field 2*/
        case 0xE3: /* Application Field 3*/
        case 0xE4: /* Application Field 4*/
        case 0xE5: /* Application Field 5*/
        case 0xE6: /* Application Field 6*/
        case 0xE7: /* Application Field 7*/
        case 0xE8: /* Application Field 8*/
        case 0xE9: /* Application Field 9*/
        case 0xEA: /* Application Field 10*/
        case 0xEB: /* Application Field 11*/
        case 0xEC: /* Application Field 12*/
        case 0xED: /* Application Field 13*/
        case 0xEE: /* Application Field 14*/
        case 0xEF: /* Application Field 15*/
        case 0xFE: /* Comment */
            {
                marker_size = *p_src++ << 8; /* Highbyte */
                marker_size |= *p_src++; /* Lowbyte */
                p_src += marker_size-2; /* skip segment */
            }
            break;

        case 0xF0: /* Reserved for JPEG extensions */
        case 0xF1: /* Reserved for JPEG extensions */
        case 0xF2: /* Reserved for JPEG extensions */
        case 0xF3: /* Reserved for JPEG extensions */
        case 0xF4: /* Reserved for JPEG extensions */
        case 0xF5: /* Reserved for JPEG extensions */
        case 0xF6: /* Reserved for JPEG extensions */
        case 0xF7: /* Reserved for JPEG extensions */
        case 0xF8: /* Reserved for JPEG extensions */
        case 0xF9: /* Reserved for JPEG extensions */
        case 0xFA: /* Reserved for JPEG extensions */
        case 0xFB: /* Reserved for JPEG extensions */
        case 0xFC: /* Reserved for JPEG extensions */
        case 0xFD: /* Reserved for JPEG extensions */
        case 0x02: /* Reserved */
        default:
            return (-9); /* Unknown marker */
        } /* switch */
    } /* while */

    return (ret); /* return flags with seen markers */
}


void default_huff_tbl(struct jpeg* p_jpeg)
{
    static const struct huffman_table luma_table =
    {
        {
            0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
            0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
        },
        {
            0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00,0x01,0x7D,
            0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,
            0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42,0xB1,0xC1,0x15,0x52,0xD1,0xF0,
            0x24,0x33,0x62,0x72,0x82,0x09,0x0A,0x16,0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,
            0x29,0x2A,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
            0x4A,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,
            0x6A,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
            0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,
            0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,
            0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xE1,0xE2,
            0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,
            0xF9,0xFA
        }
    };

    static const struct huffman_table chroma_table =
    {
        {
            0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,
            0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
        },
        {
            0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01,0x02,0x77,
            0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,
            0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1,0xC1,0x09,0x23,0x33,0x52,0xF0,
            0x15,0x62,0x72,0xD1,0x0A,0x16,0x24,0x34,0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,
            0x27,0x28,0x29,0x2A,0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,
            0x49,0x4A,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,
            0x69,0x6A,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87,
            0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,0xA4,0xA5,
            0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xC2,0xC3,
            0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,
            0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,
            0xF9,0xFA
        }
    };

    MEMCPY(&p_jpeg->hufftable[0], &luma_table, sizeof(luma_table));
    MEMCPY(&p_jpeg->hufftable[1], &chroma_table, sizeof(chroma_table));

    return;
}

/* Compute the derived values for a Huffman table */
void fix_huff_tbl(int* htbl, struct derived_tbl* dtbl)
{
    int p, i, l, si;
    int lookbits, ctr;
    char huffsize[257];
    unsigned int huffcode[257];
    unsigned int code;

    dtbl->pub = htbl; /* fill in back link */

    /* Figure C.1: make table of Huffman code length for each symbol */
    /* Note that this is in code-length order. */

    p = 0;
    for (l = 1; l <= 16; l++)
    {    /* all possible code length */
        for (i = 1; i <= (int) htbl[l-1]; i++)  /* all codes per length */
            huffsize[p++] = (char) l;
    }
    huffsize[p] = 0;

    /* Figure C.2: generate the codes themselves */
    /* Note that this is in code-length order. */

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p])
    {
        while (((int) huffsize[p]) == si)
        {
            huffcode[p++] = code;
            code++;
        }
        code <<= 1;
        si++;
    }

    /* Figure F.15: generate decoding tables for bit-sequential decoding */

    p = 0;
    for (l = 1; l <= 16; l++)
    {
        if (htbl[l-1])
        {
            dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
            dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
            p += htbl[l-1];
            dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
        }
        else
        {
            dtbl->maxcode[l] = -1;  /* -1 if no codes of this length */
        }
    }
    dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */

    /* Compute lookahead tables to speed up decoding.
    * First we set all the table entries to 0, indicating "too long";
    * then we iterate through the Huffman codes that are short enough and
    * fill in all the entries that correspond to bit sequences starting
    * with that code.
    */

    MEMSET(dtbl->look_nbits, 0, sizeof(dtbl->look_nbits));

    p = 0;
    for (l = 1; l <= HUFF_LOOKAHEAD; l++)
    {
        for (i = 1; i <= (int) htbl[l-1]; i++, p++)
        {
            /* l = current code's length, p = its index in huffcode[] & huffval[]. */
            /* Generate left-justified code followed by all possible bit sequences */
            lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
            for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--)
            {
                dtbl->look_nbits[lookbits] = l;
                dtbl->look_sym[lookbits] = htbl[16+p];
                lookbits++;
            }
        }
    }
}


/* zag[i] is the natural-order position of the i'th element of zigzag order.
 * If the incoming data is corrupted, decode_mcu could attempt to
 * reference values beyond the end of the array.  To avoid a wild store,
 * we put some extra zeroes after the real entries.
 */
static const int zag[] =
{
     0,  1,  8, 16,  9,  2,  3, 10,
    17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63,
     0,  0,  0,  0,  0,  0,  0,  0, /* extra entries in case k>63 below */
     0,  0,  0,  0,  0,  0,  0,  0
};

void build_lut(struct jpeg* p_jpeg)
{
    int i;
    fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_dc,
        &p_jpeg->dc_derived_tbls[0]);
    fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_ac,
        &p_jpeg->ac_derived_tbls[0]);
    fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_dc,
        &p_jpeg->dc_derived_tbls[1]);
    fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_ac,
        &p_jpeg->ac_derived_tbls[1]);

    /* build the dequantization tables for the IDCT (De-ZiZagged) */
    for (i=0; i<64; i++)
    {
        p_jpeg->qt_idct[0][zag[i]] = p_jpeg->quanttable[0][i];
        p_jpeg->qt_idct[1][zag[i]] = p_jpeg->quanttable[1][i];
    }

    for (i=0; i<4; i++)
        p_jpeg->store_pos[i] = i; /* default ordering */

    /* assignments for the decoding of blocks */
    if (p_jpeg->frameheader[0].horizontal_sampling == 2
        && p_jpeg->frameheader[0].vertical_sampling == 1)
    {   /* 4:2:2 */
        p_jpeg->blocks = 4;
        p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
        p_jpeg->x_phys = p_jpeg->x_mbl * 16;
        p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
        p_jpeg->y_phys = p_jpeg->y_mbl * 8;
        p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 1;
        p_jpeg->mcu_membership[3] = 2;
        p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->tab_membership[3] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 2;
        p_jpeg->subsample_x[2] = 2;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 1;
        p_jpeg->subsample_y[2] = 1;
    }
    if (p_jpeg->frameheader[0].horizontal_sampling == 1
        && p_jpeg->frameheader[0].vertical_sampling == 2)
    {   /* 4:2:2 vertically subsampled */
        p_jpeg->store_pos[1] = 2; /* block positions are mirrored */
        p_jpeg->store_pos[2] = 1;
        p_jpeg->blocks = 4;
        p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
        p_jpeg->x_phys = p_jpeg->x_mbl * 8;
        p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
        p_jpeg->y_phys = p_jpeg->y_mbl * 16;
        p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 1;
        p_jpeg->mcu_membership[3] = 2;
        p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->tab_membership[3] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 1;
        p_jpeg->subsample_x[2] = 1;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 2;
        p_jpeg->subsample_y[2] = 2;
    }
    else if (p_jpeg->frameheader[0].horizontal_sampling == 2
        && p_jpeg->frameheader[0].vertical_sampling == 2)
    {   /* 4:2:0 */
        p_jpeg->blocks = 6;
        p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
        p_jpeg->x_phys = p_jpeg->x_mbl * 16;
        p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
        p_jpeg->y_phys = p_jpeg->y_mbl * 16;
        p_jpeg->mcu_membership[0] = 0;
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 0;
        p_jpeg->mcu_membership[3] = 0;
        p_jpeg->mcu_membership[4] = 1;
        p_jpeg->mcu_membership[5] = 2;
        p_jpeg->tab_membership[0] = 0;
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 0;
        p_jpeg->tab_membership[3] = 0;
        p_jpeg->tab_membership[4] = 1;
        p_jpeg->tab_membership[5] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 2;
        p_jpeg->subsample_x[2] = 2;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 2;
        p_jpeg->subsample_y[2] = 2;
    }
    else if (p_jpeg->frameheader[0].horizontal_sampling == 1
        && p_jpeg->frameheader[0].vertical_sampling == 1)
    {   /* 4:4:4 */
        /* don't overwrite p_jpeg->blocks */
        p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
        p_jpeg->x_phys = p_jpeg->x_mbl * 8;
        p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
        p_jpeg->y_phys = p_jpeg->y_mbl * 8;
        p_jpeg->mcu_membership[0] = 0;
        p_jpeg->mcu_membership[1] = 1;
        p_jpeg->mcu_membership[2] = 2;
        p_jpeg->tab_membership[0] = 0;
        p_jpeg->tab_membership[1] = 1;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 1;
        p_jpeg->subsample_x[2] = 1;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 1;
        p_jpeg->subsample_y[2] = 1;
    }
    else
    {
        /* error */
    }

}


/*
* These functions/macros provide the in-line portion of bit fetching.
* Use check_bit_buffer to ensure there are N bits in get_buffer
* before using get_bits, peek_bits, or drop_bits.
*  check_bit_buffer(state,n,action);
*    Ensure there are N bits in get_buffer; if suspend, take action.
*  val = get_bits(n);
*    Fetch next N bits.
*  val = peek_bits(n);
*    Fetch next N bits without removing them from the buffer.
*  drop_bits(n);
*    Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/

INLINE void check_bit_buffer(struct bitstream* pb, int nbits)
{
    if (pb->bits_left < nbits)
    {   /* nbits is <= 16, so I can always refill 2 bytes in this case */
        unsigned char byte;

        byte = *pb->next_input_byte++;
        if (byte == 0xFF) /* legal marker can be byte stuffing or RSTm */
        {   /* simplification: just skip the (one-byte) marker code */
            pb->next_input_byte++;
        }
        pb->get_buffer = (pb->get_buffer << 8) | byte;

        byte = *pb->next_input_byte++;
        if (byte == 0xFF) /* legal marker can be byte stuffing or RSTm */
        {   /* simplification: just skip the (one-byte) marker code */
            pb->next_input_byte++;
        }
        pb->get_buffer = (pb->get_buffer << 8) | byte;

        pb->bits_left += 16;
    }
}

INLINE int get_bits(struct bitstream* pb, int nbits)
{
    return ((int) (pb->get_buffer >> (pb->bits_left -= nbits))) & (BIT_N(nbits)-1);
}

INLINE int peek_bits(struct bitstream* pb, int nbits)
{
    return ((int) (pb->get_buffer >> (pb->bits_left - nbits))) & (BIT_N(nbits)-1);
}

INLINE void drop_bits(struct bitstream* pb, int nbits)
{
    pb->bits_left -= nbits;
}

/* re-synchronize to entropy data (skip restart marker) */
void search_restart(struct bitstream* pb)
{
    pb->next_input_byte--; /* we may have overread it, taking 2 bytes */
    /* search for a non-byte-padding marker, has to be RSTm or EOS */
    while (pb->next_input_byte < pb->input_end &&
        (pb->next_input_byte[-2] != 0xFF || pb->next_input_byte[-1] == 0x00))
    {
        pb->next_input_byte++;
    }
    pb->bits_left = 0;
}

/* Figure F.12: extend sign bit. */
#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))

static const int extend_test[16] =   /* entry n is 2**(n-1) */
{
    0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
};

static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{
    0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1
};

/* Decode a single value */
INLINE int huff_decode_dc(struct bitstream* bs, struct derived_tbl* tbl)
{
    int nb, look, s, r;

    check_bit_buffer(bs, HUFF_LOOKAHEAD);
    look = peek_bits(bs, HUFF_LOOKAHEAD);
    if ((nb = tbl->look_nbits[look]) != 0)
    {
        drop_bits(bs, nb);
        s = tbl->look_sym[look];
        check_bit_buffer(bs, s);
        r = get_bits(bs, s);
        s = HUFF_EXTEND(r, s);
    }
    else
    {   /*  slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */
        long code;
        nb=HUFF_LOOKAHEAD+1;
        check_bit_buffer(bs, nb);
        code = get_bits(bs, nb);
        while (code > tbl->maxcode[nb])
        {
            code <<= 1;
            check_bit_buffer(bs, 1);
            code |= get_bits(bs, 1);
            nb++;
        }
        if (nb > 16) /* error in Huffman */
        {
            s=0; /* fake a zero, this is most safe */
        }
        else
        {
            s = tbl->pub[16 + tbl->valptr[nb] + ((int) (code - tbl->mincode[nb])) ];
            check_bit_buffer(bs, s);
            r = get_bits(bs, s);
            s = HUFF_EXTEND(r, s);
        }
    } /* end slow decode */
    return s;
}

INLINE int huff_decode_ac(struct bitstream* bs, struct derived_tbl* tbl)
{
    int nb, look, s;

    check_bit_buffer(bs, HUFF_LOOKAHEAD);
    look = peek_bits(bs, HUFF_LOOKAHEAD);
    if ((nb = tbl->look_nbits[look]) != 0)
    {
        drop_bits(bs, nb);
        s = tbl->look_sym[look];
    }
    else
    {   /*  slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */
        long code;
        nb=HUFF_LOOKAHEAD+1;
        check_bit_buffer(bs, nb);
        code = get_bits(bs, nb);
        while (code > tbl->maxcode[nb])
        {
            code <<= 1;
            check_bit_buffer(bs, 1);
            code |= get_bits(bs, 1);
            nb++;
        }
        if (nb > 16) /* error in Huffman */
        {
            s=0; /* fake a zero, this is most safe */
        }
        else
        {
            s = tbl->pub[16 + tbl->valptr[nb] + ((int) (code - tbl->mincode[nb])) ];
        }
    } /* end slow decode */
    return s;
}


#ifdef HAVE_LCD_COLOR

/* JPEG decoder variant for YUV decoding, into 3 different planes */
/*  Note: it keeps the original color subsampling, even if resized. */
int jpeg_decode(struct jpeg* p_jpeg, unsigned char* p_pixel[3],
                int downscale, void (*pf_progress)(int current, int total))
{
    struct bitstream bs; /* bitstream "object" */
    int block[64]; /* decoded DCT coefficients */

    int width, height;
    int skip_line[3]; /* bytes from one line to the next (skip_line) */
    int skip_strip[3], skip_mcu[3]; /* bytes to next DCT row / column */

    int i, x, y; /* loop counter */

    unsigned char* p_line[3] = {p_pixel[0], p_pixel[1], p_pixel[2]};
    unsigned char* p_byte[3]; /* bitmap pointer */

    void (*pf_idct)(unsigned char*, int*, int*, int); /* selected IDCT */
    int k_need; /* AC coefficients needed up to here */
    int zero_need; /* init the block with this many zeros */

    int last_dc_val[3] = {0, 0, 0}; /* or 128 for chroma? */
    int store_offs[4]; /* memory offsets: order of Y11 Y12 Y21 Y22 U V */
    int restart = p_jpeg->restart_interval; /* MCUs until restart marker */

    /* pick the IDCT we want, determine how to work with coefs */
    if (downscale == 1)
    {
        pf_idct = idct8x8;
        k_need = 64; /* all */
        zero_need = 63; /* all */
    }
    else if (downscale == 2)
    {
        pf_idct = idct4x4;
        k_need = 25; /* this far in zig-zag to cover 4*4 */
        zero_need = 27; /* clear this far in linear order */
    }
    else if (downscale == 4)
    {
        pf_idct = idct2x2;
        k_need = 5; /* this far in zig-zag to cover 2*2 */
        zero_need = 9; /* clear this far in linear order */
    }
    else if (downscale == 8)
    {
        pf_idct = idct1x1;
        k_need = 0; /* no AC, not needed */
        zero_need = 0; /* no AC, not needed */
    }
    else return -1; /* not supported */

    /* init bitstream, fake a restart to make it start */
    bs.next_input_byte = p_jpeg->p_entropy_data;
    bs.bits_left = 0;
    bs.input_end = p_jpeg->p_entropy_end;

    width  = p_jpeg->x_phys / downscale;
    height = p_jpeg->y_phys / downscale;
    for (i=0; i<3; i++) /* calculate some strides */
    {
        skip_line[i] = width / p_jpeg->subsample_x[i];
        skip_strip[i] = skip_line[i]
                        * (height / p_jpeg->y_mbl) / p_jpeg->subsample_y[i];
        skip_mcu[i] = width/p_jpeg->x_mbl / p_jpeg->subsample_x[i];
    }

    /* prepare offsets about where to store the different blocks */
    store_offs[p_jpeg->store_pos[0]] = 0;
    store_offs[p_jpeg->store_pos[1]] = 8 / downscale; /* to the right */
    store_offs[p_jpeg->store_pos[2]] = width * 8 / downscale; /* below */
    store_offs[p_jpeg->store_pos[3]] = store_offs[1] + store_offs[2]; /* r+b */

    for(y=0; y<p_jpeg->y_mbl && bs.next_input_byte <= bs.input_end; y++)
    {
        for (i=0; i<3; i++) /* scan line init */
        {
            p_byte[i] = p_line[i];
            p_line[i] += skip_strip[i];
        }
        for (x=0; x<p_jpeg->x_mbl; x++)
        {
            int blkn;

            /* Outer loop handles each block in the MCU */
            for (blkn = 0; blkn < p_jpeg->blocks; blkn++)
            {   /* Decode a single block's worth of coefficients */
                int k = 1; /* coefficient index */
                int s, r; /* huffman values */
                int ci = p_jpeg->mcu_membership[blkn]; /* component index */
                int ti = p_jpeg->tab_membership[blkn]; /* table index */
                struct derived_tbl* dctbl = &p_jpeg->dc_derived_tbls[ti];
                struct derived_tbl* actbl = &p_jpeg->ac_derived_tbls[ti];

                /* Section F.2.2.1: decode the DC coefficient difference */
                s = huff_decode_dc(&bs, dctbl);

                last_dc_val[ci] += s;
                block[0] = last_dc_val[ci]; /* output it (assumes zag[0] = 0) */

                /* coefficient buffer must be cleared */
                MEMSET(block+1, 0, zero_need*sizeof(block[0]));

                /* Section F.2.2.2: decode the AC coefficients */
                for (; k < k_need; k++)
                {
                    s = huff_decode_ac(&bs, actbl);
                    r = s >> 4;
                    s &= 15;

                    if (s)
                    {
                        k += r;
                        check_bit_buffer(&bs, s);
                        r = get_bits(&bs, s);
                        block[zag[k]] = HUFF_EXTEND(r, s);
                    }
                    else
                    {
                        if (r != 15)
                        {
                            k = 64;
                            break;
                        }
                        k += r;
                    }
                }  /* for k */
                /* In this path we just discard the values */
                for (; k < 64; k++)
                {
                    s = huff_decode_ac(&bs, actbl);
                    r = s >> 4;
                    s &= 15;

                    if (s)
                    {
                        k += r;
                        check_bit_buffer(&bs, s);
                        drop_bits(&bs, s);
                    }
                    else
                    {
                        if (r != 15)
                            break;
                        k += r;
                    }
                }  /* for k */

                if (ci == 0)
                {   /* Y component needs to bother about block store */
                    pf_idct(p_byte[0]+store_offs[blkn], block,
                        p_jpeg->qt_idct[ti], skip_line[0]);
                }
                else
                {   /* chroma */
                    pf_idct(p_byte[ci], block, p_jpeg->qt_idct[ti],
                        skip_line[ci]);
                }
            } /* for blkn */
            p_byte[0] += skip_mcu[0]; /* unrolled for (i=0; i<3; i++) loop */
            p_byte[1] += skip_mcu[1];
            p_byte[2] += skip_mcu[2];
            if (p_jpeg->restart_interval && --restart == 0)
            {   /* if a restart marker is due: */
                restart = p_jpeg->restart_interval; /* count again */
                search_restart(&bs); /* align the bitstream */
                last_dc_val[0] = last_dc_val[1] =
                                 last_dc_val[2] = 0; /* reset decoder */
            }
        } /* for x */
        if (pf_progress != NULL)
            pf_progress(y, p_jpeg->y_mbl-1); /* notify about decoding progress */
    } /* for y */

    return 0; /* success */
}
#else /* !HAVE_LCD_COLOR */

/* a JPEG decoder specialized in decoding only the luminance (b&w) */
int jpeg_decode(struct jpeg* p_jpeg, unsigned char* p_pixel[1], int downscale,
                void (*pf_progress)(int current, int total))
{
    struct bitstream bs; /* bitstream "object" */
    int block[64]; /* decoded DCT coefficients */

    int width, height;
    int skip_line; /* bytes from one line to the next (skip_line) */
    int skip_strip, skip_mcu; /* bytes to next DCT row / column */

    int x, y; /* loop counter */

    unsigned char* p_line = p_pixel[0];
    unsigned char* p_byte; /* bitmap pointer */

    void (*pf_idct)(unsigned char*, int*, int*, int); /* selected IDCT */
    int k_need; /* AC coefficients needed up to here */
    int zero_need; /* init the block with this many zeros */

    int last_dc_val = 0;
    int store_offs[4]; /* memory offsets: order of Y11 Y12 Y21 Y22 U V */
    int restart = p_jpeg->restart_interval; /* MCUs until restart marker */

    /* pick the IDCT we want, determine how to work with coefs */
    if (downscale == 1)
    {
        pf_idct = idct8x8;
        k_need = 64; /* all */
        zero_need = 63; /* all */
    }
    else if (downscale == 2)
    {
        pf_idct = idct4x4;
        k_need = 25; /* this far in zig-zag to cover 4*4 */
        zero_need = 27; /* clear this far in linear order */
    }
    else if (downscale == 4)
    {
        pf_idct = idct2x2;
        k_need = 5; /* this far in zig-zag to cover 2*2 */
        zero_need = 9; /* clear this far in linear order */
    }
    else if (downscale == 8)
    {
        pf_idct = idct1x1;
        k_need = 0; /* no AC, not needed */
        zero_need = 0; /* no AC, not needed */
    }
    else return -1; /* not supported */

    /* init bitstream, fake a restart to make it start */
    bs.next_input_byte = p_jpeg->p_entropy_data;
    bs.bits_left = 0;
    bs.input_end = p_jpeg->p_entropy_end;

    width  = p_jpeg->x_phys / downscale;
    height = p_jpeg->y_phys / downscale;
    skip_line = width;
    skip_strip = skip_line * (height / p_jpeg->y_mbl);
    skip_mcu = (width/p_jpeg->x_mbl);

    /* prepare offsets about where to store the different blocks */
    store_offs[p_jpeg->store_pos[0]] = 0;
    store_offs[p_jpeg->store_pos[1]] = 8 / downscale; /* to the right */
    store_offs[p_jpeg->store_pos[2]] = width * 8 / downscale; /* below */
    store_offs[p_jpeg->store_pos[3]] = store_offs[1] + store_offs[2]; /* r+b */

    for(y=0; y<p_jpeg->y_mbl && bs.next_input_byte <= bs.input_end; y++)
    {
        p_byte = p_line;
        p_line += skip_strip;
        for (x=0; x<p_jpeg->x_mbl; x++)
        {
            int blkn;

            /* Outer loop handles each block in the MCU */
            for (blkn = 0; blkn < p_jpeg->blocks; blkn++)
            {   /* Decode a single block's worth of coefficients */
                int k = 1; /* coefficient index */
                int s, r; /* huffman values */
                int ci = p_jpeg->mcu_membership[blkn]; /* component index */
                int ti = p_jpeg->tab_membership[blkn]; /* table index */
                struct derived_tbl* dctbl = &p_jpeg->dc_derived_tbls[ti];
                struct derived_tbl* actbl = &p_jpeg->ac_derived_tbls[ti];

                /* Section F.2.2.1: decode the DC coefficient difference */
                s = huff_decode_dc(&bs, dctbl);

                if (ci == 0) /* only for Y component */
                {
                    last_dc_val += s;
                    block[0] = last_dc_val; /* output it (assumes zag[0] = 0) */

                    /* coefficient buffer must be cleared */
                    MEMSET(block+1, 0, zero_need*sizeof(block[0]));

                    /* Section F.2.2.2: decode the AC coefficients */
                    for (; k < k_need; k++)
                    {
                        s = huff_decode_ac(&bs, actbl);
                        r = s >> 4;
                        s &= 15;

                        if (s)
                        {
                            k += r;
                            check_bit_buffer(&bs, s);
                            r = get_bits(&bs, s);
                            block[zag[k]] = HUFF_EXTEND(r, s);
                        }
                        else
                        {
                            if (r != 15)
                            {
                                k = 64;
                                break;
                            }
                            k += r;
                        }
                    }  /* for k */
                }
                /* In this path we just discard the values */
                for (; k < 64; k++)
                {
                    s = huff_decode_ac(&bs, actbl);
                    r = s >> 4;
                    s &= 15;

                    if (s)
                    {
                        k += r;
                        check_bit_buffer(&bs, s);
                        drop_bits(&bs, s);
                    }
                    else
                    {
                        if (r != 15)
                            break;
                        k += r;
                    }
                }  /* for k */

                if (ci == 0)
                {   /* only for Y component */
                    pf_idct(p_byte+store_offs[blkn], block, p_jpeg->qt_idct[ti],
                        skip_line);
                }
            } /* for blkn */
            p_byte += skip_mcu;
            if (p_jpeg->restart_interval && --restart == 0)
            {   /* if a restart marker is due: */
                restart = p_jpeg->restart_interval; /* count again */
                search_restart(&bs); /* align the bitstream */
                last_dc_val = 0; /* reset decoder */
            }
        } /* for x */
        if (pf_progress != NULL)
            pf_progress(y, p_jpeg->y_mbl-1); /* notify about decoding progress */
    } /* for y */

    return 0; /* success */
}
#endif /* !HAVE_LCD_COLOR */

/**************** end JPEG code ********************/