summaryrefslogtreecommitdiffstats
path: root/apps/recorder/jpeg_load.c
blob: 1af65fab6c84b9b5b9189cf76d642a41fc3eba38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
/***************************************************************************
*             __________               __   ___.
*   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
*   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
*   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
*   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
*                     \/            \/     \/    \/            \/
* $Id$
*
* JPEG image viewer
* (This is a real mess if it has to be coded in one single C file)
*
* Copyright (C) 2009 Andrew Mahone fractional decode, split IDCT - 16-point
*   IDCT based on IJG jpeg-7 pre-release
* File scrolling addition (C) 2005 Alexander Spyridakis
* Copyright (C) 2004 Jörg Hohensohn aka [IDC]Dragon
* Heavily borrowed from the IJG implementation (C) Thomas G. Lane
* Small & fast downscaling IDCT (C) 2002 by Guido Vollbeding  JPEGclub.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/

#include "plugin.h"
#include "debug.h"
#include "jpeg_load.h"
/*#define JPEG_BS_DEBUG*/
//#define ROCKBOX_DEBUG_JPEG
/* for portability of below JPEG code */
#define MEMSET(p,v,c) memset(p,v,c)
#define MEMCPY(d,s,c) memcpy(d,s,c)
#define INLINE static inline
#define ENDIAN_SWAP16(n) n /* only for poor little endian machines */
#ifdef ROCKBOX_DEBUG_JPEG
#define JDEBUGF DEBUGF
#else
#define JDEBUGF(...)
#endif

/**************** begin JPEG code ********************/

#ifdef HAVE_LCD_COLOR
typedef struct uint8_rgb jpeg_pix_t;
#else
typedef uint8_t jpeg_pix_t;
#endif
#define JPEG_IDCT_TRANSPOSE
#define JPEG_PIX_SZ (sizeof(jpeg_pix_t))
#ifdef HAVE_LCD_COLOR
#define COLOR_EXTRA_IDCT_WS 64
#else
#define COLOR_EXTRA_IDCT_WS 0
#endif
#ifdef JPEG_IDCT_TRANSPOSE
#define V_OUT(n) ws2[8*n]
#define V_IN_ST 1
#define TRANSPOSE_EXTRA_IDCT_WS 64
#else
#define V_OUT(n) ws[8*n]
#define V_IN_ST 8
#define TRANSPOSE_EXTRA_IDCT_WS 0
#endif
#define IDCT_WS_SIZE (64 + TRANSPOSE_EXTRA_IDCT_WS + COLOR_EXTRA_IDCT_WS)

/* This can't be in jpeg_load.h because plugin.h includes it, and it conflicts
 * with the definition in jpeg_decoder.h
 */
struct jpeg
{
#ifdef JPEG_FROM_MEM
    unsigned char *data;
    unsigned long len;
#else
    int fd;
    int buf_left;
    int buf_index;
#endif
    unsigned long int bitbuf;
    int bitbuf_bits;
    int marker_ind;
    int marker_val;
    unsigned char marker;
    int x_size, y_size; /* size of image (can be less than block boundary) */
    int x_phys, y_phys; /* physical size, block aligned */
    int x_mbl; /* x dimension of MBL */
    int y_mbl; /* y dimension of MBL */
    int blocks; /* blocks per MB */
    int restart_interval; /* number of MCUs between RSTm markers */
    int restart; /* blocks until next restart marker */
    int mcu_row; /* current row relative to first row of this row of MCUs */
    unsigned char *out_ptr; /* pointer to current row to output */
    int cur_row; /* current row relative to top of image */
    int set_rows;
    int store_pos[4]; /* for Y block ordering */
#ifdef HAVE_LCD_COLOR
    int last_dc_val[3];
    int h_scale[2]; /* horizontal scalefactor = (2**N) / 8 */
    int v_scale[2]; /* same as above, for vertical direction */
    int k_need[2]; /* per component zig-zag index of last needed coefficient */
    int zero_need[2]; /* per compenent number of coefficients to zero */
#else
    int last_dc_val;
    int h_scale[1]; /* horizontal scalefactor = (2**N) / 8 */
    int v_scale[1]; /* same as above, for vertical direction */
    int k_need[1]; /* per component zig-zag index of last needed coefficient */
    int zero_need[1]; /* per compenent number of coefficients to zero */
#endif
    jpeg_pix_t *img_buf;

    int16_t quanttable[4][QUANT_TABLE_LENGTH];/* raw quantization tables 0-3 */

    struct huffman_table hufftable[2]; /* Huffman tables  */
    struct derived_tbl dc_derived_tbls[2]; /* Huffman-LUTs */
    struct derived_tbl ac_derived_tbls[2];

    struct frame_component frameheader[3]; /* Component descriptor */
    struct scan_component scanheader[3]; /* currently not used */

    int mcu_membership[6]; /* info per block */
    int tab_membership[6];
    int subsample_x[3]; /* info per component */
    int subsample_y[3];
    bool resize;
    unsigned char buf[JPEG_READ_BUF_SIZE];
    struct img_part part;
};

#ifdef JPEG_FROM_MEM
static struct jpeg jpeg;
#endif

INLINE unsigned range_limit(int value)
{
#if CONFIG_CPU == SH7034
    unsigned tmp;
    asm (  /* Note: Uses knowledge that only low byte of result is used */
        "extu.b  %[v],%[t]   \n"
        "cmp/eq  %[v],%[t]   \n"  /* low byte == whole number ? */
        "bt      1f          \n"  /* yes: no overflow */
        "cmp/pz  %[v]        \n"  /* overflow: positive? */
        "subc    %[v],%[v]   \n"  /* %[r] now either 0 or 0xffffffff */
    "1:                      \n"
        : /* outputs */
        [v]"+r"(value),
        [t]"=&r"(tmp)
    );
    return value;
#elif defined(CPU_COLDFIRE)
    /* Note: Uses knowledge that only the low byte of the result is used */
    asm (
        "cmp.l   #255,%[v]   \n"  /* overflow? */
        "bls.b   1f          \n"  /* no: return value */
        /* yes: set low byte to appropriate boundary */
        "spl.b   %[v]        \n"
    "1:                      \n"
        : /* outputs */
        [v]"+d"(value)
    );
    return value;
#elif defined(CPU_ARM)
    /* Note: Uses knowledge that only the low byte of the result is used */
    asm (
        "cmp     %[v], #255          \n"  /* out of range 0..255? */
        "mvnhi   %[v], %[v], asr #31 \n"  /* yes: set all bits to ~(sign_bit) */
        : /* outputs */
        [v]"+r"(value)
    );
    return value;
#else
    if ((unsigned)value <= 255)
        return value;

    if (value < 0)
        return 0;

    return 255;
#endif
}

INLINE unsigned scale_output(int value)
{
#if defined(CPU_ARM) && ARM_ARCH >= 6
    asm (
        "usat %[v], #8, %[v], asr #18\n"
        : [v] "+r" (value)
    );
    return value;
#else
    return range_limit(value >> 18);
#endif
}

/* IDCT implementation */


#define CONST_BITS 13
#define PASS1_BITS 2


/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#define FIX_0_298631336  2446 /* FIX(0.298631336) */
#define FIX_0_390180644  3196 /* FIX(0.390180644) */
#define FIX_0_541196100  4433 /* FIX(0.541196100) */
#define FIX_0_765366865  6270 /* FIX(0.765366865) */
#define FIX_0_899976223  7373 /* FIX(0.899976223) */
#define FIX_1_175875602  9633 /* FIX(1.175875602) */
#define FIX_1_501321110 12299 /* FIX(1.501321110) */
#define FIX_1_847759065 15137 /* FIX(1.847759065) */
#define FIX_1_961570560 16069 /* FIX(1.961570560) */
#define FIX_2_053119869 16819 /* FIX(2.053119869) */
#define FIX_2_562915447 20995 /* FIX(2.562915447) */
#define FIX_3_072711026 25172 /* FIX(3.072711026) */



/* Multiply an long variable by an long constant to yield an long result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#define MULTIPLY(var1, var2) ((var1) * (var2))

#if defined(CPU_SH) || defined(CPU_COLDFIRE) || \
    (defined(CPU_ARM) && ARM_ARCH > 4)
#define MULTIPLY16(var,const)  (((short) (var)) * ((short) (const)))
#else
#define MULTIPLY16 MULTIPLY
#endif

/*
 * Macros for handling fixed-point arithmetic; these are used by many
 * but not all of the DCT/IDCT modules.
 *
 * All values are expected to be of type INT32.
 * Fractional constants are scaled left by CONST_BITS bits.
 * CONST_BITS is defined within each module using these macros,
 * and may differ from one module to the next.
 */
#define ONE ((long)1)
#define CONST_SCALE (ONE << CONST_BITS)

/* Convert a positive real constant to an integer scaled by CONST_SCALE.
 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
 * thus causing a lot of useless floating-point operations at run time.
 */
#define FIX(x) ((long) ((x) * CONST_SCALE + 0.5))
#define RIGHT_SHIFT(x,shft)     ((x) >> (shft))

/* Descale and correctly round an int value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) (((x) + (1l << ((n)-1))) >> (n))

#define DS_OUT ((CONST_BITS)+(PASS1_BITS)+3)

/*
 * Conversion of full 0-255 range YCrCb to RGB:
 *   |R|   |1.000000 -0.000001  1.402000| |Y'|
 *   |G| = |1.000000 -0.334136 -0.714136| |Pb|
 *   |B|   |1.000000  1.772000  0.000000| |Pr|
 * Scaled (yields s15-bit output):
 *   |R|   |128    0  179| |Y       |
 *   |G| = |128  -43  -91| |Cb - 128|
 *   |B|   |128  227    0| |Cr - 128|
 */
#define YFAC            128
#define RVFAC           179
#define GUFAC           (-43)
#define GVFAC           (-91)
#define BUFAC           227
#define COMPONENT_SHIFT  15

#ifndef CPU_ARM
/* horizontal-pass 1-point IDCT */
static void jpeg_idct1h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep)
{
    for (; ws < end; ws += 8)
    {
        *out = range_limit(128 + (int) DESCALE(*ws, 3 + PASS1_BITS));
        out += rowstep;
    }
}

/* vertical-pass 2-point IDCT */
static void jpeg_idct2v(int16_t *ws, int16_t *end)
{
    for (; ws < end; ws++)
    {
        int tmp1 = ws[0*8];
        int tmp2 = ws[1*8];
        ws[0*8] = tmp1 + tmp2;
        ws[1*8] = tmp1 - tmp2;
    }
}

/* horizontal-pass 2-point IDCT */
static void jpeg_idct2h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep)
{
    for (; ws < end; ws += 8, out += rowstep)
    {
        int tmp1 = ws[0] + (ONE << (PASS1_BITS + 2))
                   + (128 << (PASS1_BITS + 3));
        int tmp2 = ws[1];
        out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp1 + tmp2,
            PASS1_BITS + 3));
        out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp1 - tmp2,
            PASS1_BITS + 3));
    }
}

/* vertical-pass 4-point IDCT */
static void jpeg_idct4v(int16_t *ws, int16_t *end)
{
    for (; ws < end; ws++)
    {
        int tmp0, tmp2, tmp10, tmp12;
        int z1, z2, z3;
        /* Even part */

        tmp0 = ws[8*0];
        tmp2 = ws[8*2];

        tmp10 = (tmp0 + tmp2) << PASS1_BITS;
        tmp12 = (tmp0 - tmp2) << PASS1_BITS;

        /* Odd part */
        /* Same rotation as in the even part of the 8x8 LL&M IDCT */

        z2 = ws[8*1];
        z3 = ws[8*3];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100) +
            (ONE << (CONST_BITS - PASS1_BITS - 1));
        tmp0 = RIGHT_SHIFT(z1 + MULTIPLY16(z3, - FIX_1_847759065),
            CONST_BITS-PASS1_BITS);
        tmp2 = RIGHT_SHIFT(z1 + MULTIPLY16(z2, FIX_0_765366865),
            CONST_BITS-PASS1_BITS);

        /* Final output stage */
        ws[8*0] = (int) (tmp10 + tmp2);
        ws[8*3] = (int) (tmp10 - tmp2);
        ws[8*1] = (int) (tmp12 + tmp0);
        ws[8*2] = (int) (tmp12 - tmp0);
    }
}

/* horizontal-pass 4-point IDCT */
static void jpeg_idct4h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep)
{
    for (; ws < end; out += rowstep, ws += 8)
    {
        int tmp0, tmp2, tmp10, tmp12;
        int z1, z2, z3;
        /* Even part */

        tmp0 = (int) ws[0] + (ONE << (PASS1_BITS + 2))
               + (128 << (PASS1_BITS + 3));
        tmp2 = (int) ws[2];

        tmp10 = (tmp0 + tmp2) << CONST_BITS;
        tmp12 = (tmp0 - tmp2) << CONST_BITS;

        /* Odd part */
        /* Same rotation as in the even part of the 8x8 LL&M IDCT */

        z2 = (int) ws[1];
        z3 = (int) ws[3];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp0 = z1 - MULTIPLY16(z3, FIX_1_847759065);
        tmp2 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        /* Final output stage */

        out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp2,
            DS_OUT));
        out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp2,
            DS_OUT));
        out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp0,
            DS_OUT));
        out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp0,
            DS_OUT));
    }
}

/* vertical-pass 8-point IDCT */
static void jpeg_idct8v(int16_t *ws, int16_t *end)
{
    long tmp0, tmp1, tmp2, tmp3;
    long tmp10, tmp11, tmp12, tmp13;
    long z1, z2, z3, z4, z5;
#ifdef JPEG_IDCT_TRANSPOSE
    int16_t *ws2 = ws + 64;
    for (; ws < end; ws += 8, ws2++)
    {
#else
    for (; ws < end; ws++)
    {
#endif
    /* Due to quantization, we will usually find that many of the input
    * coefficients are zero, especially the AC terms.  We can exploit this
    * by short-circuiting the IDCT calculation for any column in which all
    * the AC terms are zero.  In that case each output is equal to the
    * DC coefficient (with scale factor as needed).
    * With typical images and quantization tables, half or more of the
    * column DCT calculations can be simplified this way.
    */
        if ((ws[V_IN_ST*1] | ws[V_IN_ST*2] | ws[V_IN_ST*3]
           | ws[V_IN_ST*4] | ws[V_IN_ST*5] | ws[V_IN_ST*6] | ws[V_IN_ST*7]) == 0)
        {
            /* AC terms all zero */
            int dcval = ws[V_IN_ST*0] << PASS1_BITS;

            V_OUT(0) = V_OUT(1) = V_OUT(2) = V_OUT(3) = V_OUT(4) = V_OUT(5) =
                       V_OUT(6) = V_OUT(7) = dcval;
            continue;
        }

        /* Even part: reverse the even part of the forward DCT. */
        /* The rotator is sqrt(2)*c(-6). */

        z2 = ws[V_IN_ST*2];
        z3 = ws[V_IN_ST*6];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
        tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        z2 = ws[V_IN_ST*0] << CONST_BITS;
        z2 += ONE << (CONST_BITS - PASS1_BITS - 1);
        z3 = ws[V_IN_ST*4] << CONST_BITS;

        tmp0 = (z2 + z3);
        tmp1 = (z2 - z3);

        tmp10 = tmp0 + tmp3;
        tmp13 = tmp0 - tmp3;
        tmp11 = tmp1 + tmp2;
        tmp12 = tmp1 - tmp2;

        /* Odd part per figure 8; the matrix is unitary and hence its
           transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively. */

        tmp0 = ws[V_IN_ST*7];
        tmp1 = ws[V_IN_ST*5];
        tmp2 = ws[V_IN_ST*3];
        tmp3 = ws[V_IN_ST*1];

        z1 = tmp0 + tmp3;
        z2 = tmp1 + tmp2;
        z3 = tmp0 + tmp2;
        z4 = tmp1 + tmp3;
        z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

        tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
        tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
        tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
        tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
        z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
        z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
        z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
        z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

        z3 += z5;
        z4 += z5;

        tmp0 += z1 + z3;
        tmp1 += z2 + z4;
        tmp2 += z2 + z3;
        tmp3 += z1 + z4;

        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

        V_OUT(0) = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
        V_OUT(7) = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
        V_OUT(1) = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
        V_OUT(6) = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
        V_OUT(2) = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
        V_OUT(5) = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
        V_OUT(3) = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
        V_OUT(4) = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
    }
}

/* horizontal-pass 8-point IDCT */
static void jpeg_idct8h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep)
{
    long tmp0, tmp1, tmp2, tmp3;
    long tmp10, tmp11, tmp12, tmp13;
    long z1, z2, z3, z4, z5;
    for (; ws < end; out += rowstep, ws += 8)
    {
        /* Rows of zeroes can be exploited in the same way as we did with
         * columns. However, the column calculation has created many nonzero AC
         * terms, so the simplification applies less often (typically 5% to 10%
         * of the time). On machines with very fast multiplication, it's
         * possible that the test takes more time than it's worth.  In that
         * case this section may be commented out.
        */

#ifndef NO_ZERO_ROW_TEST
        if ((ws[1] | ws[2] | ws[3]
           | ws[4] | ws[5] | ws[6] | ws[7]) == 0)
        {
            /* AC terms all zero */
            unsigned char dcval = range_limit(128 + (int) DESCALE((long) ws[0],
                PASS1_BITS+3));

            out[JPEG_PIX_SZ*0] = dcval;
            out[JPEG_PIX_SZ*1] = dcval;
            out[JPEG_PIX_SZ*2] = dcval;
            out[JPEG_PIX_SZ*3] = dcval;
            out[JPEG_PIX_SZ*4] = dcval;
            out[JPEG_PIX_SZ*5] = dcval;
            out[JPEG_PIX_SZ*6] = dcval;
            out[JPEG_PIX_SZ*7] = dcval;
            continue;
        }
#endif

        /* Even part: reverse the even part of the forward DCT. */
        /* The rotator is sqrt(2)*c(-6). */

        z2 = (long) ws[2];
        z3 = (long) ws[6];

        z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
        tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
        tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);

        z4 = (long) ws[0] + (ONE << (PASS1_BITS + 2))
             + (128 << (PASS1_BITS + 3));
        z4 <<= CONST_BITS;
        z5 = (long) ws[4] << CONST_BITS;
        tmp0 = z4 + z5;
        tmp1 = z4 - z5;

        tmp10 = tmp0 + tmp3;
        tmp13 = tmp0 - tmp3;
        tmp11 = tmp1 + tmp2;
        tmp12 = tmp1 - tmp2;

        /* Odd part per figure 8; the matrix is unitary and hence its
        * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */

        tmp0 = (long) ws[7];
        tmp1 = (long) ws[5];
        tmp2 = (long) ws[3];
        tmp3 = (long) ws[1];

        z1 = tmp0 + tmp3;
        z2 = tmp1 + tmp2;
        z3 = tmp0 + tmp2;
        z4 = tmp1 + tmp3;
        z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

        tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
        tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
        tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
        tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
        z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
        z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
        z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
        z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

        z3 += z5;
        z4 += z5;

        tmp0 += z1 + z3;
        tmp1 += z2 + z4;
        tmp2 += z2 + z3;
        tmp3 += z1 + z4;

        /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */

        out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp3,
            DS_OUT));
        out[JPEG_PIX_SZ*7] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp3,
            DS_OUT));
        out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp11 + tmp2,
            DS_OUT));
        out[JPEG_PIX_SZ*6] = range_limit((int) RIGHT_SHIFT(tmp11 - tmp2,
            DS_OUT));
        out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp1,
            DS_OUT));
        out[JPEG_PIX_SZ*5] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp1,
            DS_OUT));
        out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp13 + tmp0,
            DS_OUT));
        out[JPEG_PIX_SZ*4] = range_limit((int) RIGHT_SHIFT(tmp13 - tmp0,
            DS_OUT));
    }
}

#else
extern void jpeg_idct1h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep);
extern void jpeg_idct2v(int16_t *ws, int16_t *end);
extern void jpeg_idct2h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep);
extern void jpeg_idct4v(int16_t *ws, int16_t *end);
extern void jpeg_idct4h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep);
extern void jpeg_idct8v(int16_t *ws, int16_t *end);
extern void jpeg_idct8h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep);
#endif

#ifdef HAVE_LCD_COLOR
/* vertical-pass 16-point IDCT */
static void jpeg_idct16v(int16_t *ws, int16_t *end)
{
    long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
    long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
    long z1, z2, z3, z4;
#ifdef JPEG_IDCT_TRANSPOSE
    int16_t *ws2 = ws + 64;
    for (; ws < end; ws += 8, ws2++)
    {
#else
    for (; ws < end; ws++)
    {
#endif
        /* Even part */

        tmp0 = ws[V_IN_ST*0] << CONST_BITS;
        /* Add fudge factor here for final descale. */
        tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);

        z1 = ws[V_IN_ST*4];
        tmp1 = MULTIPLY(z1, FIX(1.306562965));      /* c4[16] = c2[8] */
        tmp2 = MULTIPLY(z1, FIX_0_541196100);       /* c12[16] = c6[8] */

        tmp10 = tmp0 + tmp1;
        tmp11 = tmp0 - tmp1;
        tmp12 = tmp0 + tmp2;
        tmp13 = tmp0 - tmp2;

        z1 = ws[V_IN_ST*2];
        z2 = ws[V_IN_ST*6];
        z3 = z1 - z2;
        z4 = MULTIPLY(z3, FIX(0.275899379));        /* c14[16] = c7[8] */
        z3 = MULTIPLY(z3, FIX(1.387039845));        /* c2[16] = c1[8] */

        /* (c6+c2)[16] = (c3+c1)[8] */
        tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);
        /* (c6-c14)[16] = (c3-c7)[8] */
        tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);
        /* (c2-c10)[16] = (c1-c5)[8] */
        tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887));
        /* (c10-c14)[16] = (c5-c7)[8] */
        tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579));

        tmp20 = tmp10 + tmp0;
        tmp27 = tmp10 - tmp0;
        tmp21 = tmp12 + tmp1;
        tmp26 = tmp12 - tmp1;
        tmp22 = tmp13 + tmp2;
        tmp25 = tmp13 - tmp2;
        tmp23 = tmp11 + tmp3;
        tmp24 = tmp11 - tmp3;

        /* Odd part */

        z1 = ws[V_IN_ST*1];
        z2 = ws[V_IN_ST*3];
        z3 = ws[V_IN_ST*5];
        z4 = ws[V_IN_ST*7];

        tmp11 = z1 + z3;

        tmp1  = MULTIPLY(z1 + z2, FIX(1.353318001));   /* c3 */
        tmp2  = MULTIPLY(tmp11,   FIX(1.247225013));   /* c5 */
        tmp3  = MULTIPLY(z1 + z4, FIX(1.093201867));   /* c7 */
        tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586));   /* c9 */
        tmp11 = MULTIPLY(tmp11,   FIX(0.666655658));   /* c11 */
        tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528));   /* c13 */
        tmp0  = tmp1 + tmp2 + tmp3 -
            MULTIPLY(z1, FIX(2.286341144));        /* c7+c5+c3-c1 */
        tmp13 = tmp10 + tmp11 + tmp12 -
            MULTIPLY(z1, FIX(1.835730603));        /* c9+c11+c13-c15 */
        z1    = MULTIPLY(z2 + z3, FIX(0.138617169));   /* c15 */
        tmp1  += z1 + MULTIPLY(z2, FIX(0.071888074));  /* c9+c11-c3-c15 */
        tmp2  += z1 - MULTIPLY(z3, FIX(1.125726048));  /* c5+c7+c15-c3 */
        z1    = MULTIPLY(z3 - z2, FIX(1.407403738));   /* c1 */
        tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282));  /* c1+c11-c9-c13 */
        tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411));  /* c1+c5+c13-c7 */
        z2    += z4;
        z1    = MULTIPLY(z2, - FIX(0.666655658));      /* -c11 */
        tmp1  += z1;
        tmp3  += z1 + MULTIPLY(z4, FIX(1.065388962));  /* c3+c11+c15-c7 */
        z2    = MULTIPLY(z2, - FIX(1.247225013));      /* -c5 */
        tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809));  /* c1+c5+c9-c13 */
        tmp12 += z2;
        z2    = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
        tmp2  += z2;
        tmp3  += z2;
        z2    = MULTIPLY(z4 - z3, FIX(0.410524528));   /* c13 */
        tmp10 += z2;
        tmp11 += z2;

        /* Final output stage */
        V_OUT(0)  = (int) RIGHT_SHIFT(tmp20 + tmp0,  CONST_BITS-PASS1_BITS);
        V_OUT(15) = (int) RIGHT_SHIFT(tmp20 - tmp0,  CONST_BITS-PASS1_BITS);
        V_OUT(1)  = (int) RIGHT_SHIFT(tmp21 + tmp1,  CONST_BITS-PASS1_BITS);
        V_OUT(14) = (int) RIGHT_SHIFT(tmp21 - tmp1,  CONST_BITS-PASS1_BITS);
        V_OUT(2)  = (int) RIGHT_SHIFT(tmp22 + tmp2,  CONST_BITS-PASS1_BITS);
        V_OUT(13) = (int) RIGHT_SHIFT(tmp22 - tmp2,  CONST_BITS-PASS1_BITS);
        V_OUT(3)  = (int) RIGHT_SHIFT(tmp23 + tmp3,  CONST_BITS-PASS1_BITS);
        V_OUT(12) = (int) RIGHT_SHIFT(tmp23 - tmp3,  CONST_BITS-PASS1_BITS);
        V_OUT(4)  = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
        V_OUT(11) = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
        V_OUT(5)  = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
        V_OUT(10) = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
        V_OUT(6)  = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
        V_OUT(9)  = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
        V_OUT(7)  = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
        V_OUT(8)  = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
    }
}

/* horizontal-pass 16-point IDCT */
static void jpeg_idct16h(int16_t *ws, unsigned char *out, int16_t *end, int rowstep)
{
    long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
    long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
    long z1, z2, z3, z4;
    for (; ws < end; out += rowstep, ws += 8)
    {
        /* Even part */

        /* Add fudge factor here for final descale. */
        tmp0 = (long) ws[0] + (ONE << (PASS1_BITS+2))
               + (128 << (PASS1_BITS + 3));
        tmp0 <<= CONST_BITS;

        z1 = (long) ws[4];
        tmp1 = MULTIPLY(z1, FIX(1.306562965));      /* c4[16] = c2[8] */
        tmp2 = MULTIPLY(z1, FIX_0_541196100);       /* c12[16] = c6[8] */

        tmp10 = tmp0 + tmp1;
        tmp11 = tmp0 - tmp1;
        tmp12 = tmp0 + tmp2;
        tmp13 = tmp0 - tmp2;

        z1 = (long) ws[2];
        z2 = (long) ws[6];
        z3 = z1 - z2;
        z4 = MULTIPLY(z3, FIX(0.275899379));        /* c14[16] = c7[8] */
        z3 = MULTIPLY(z3, FIX(1.387039845));        /* c2[16] = c1[8] */

        /* (c6+c2)[16] = (c3+c1)[8] */
        tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);
        /* (c6-c14)[16] = (c3-c7)[8] */
        tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);
        /* (c2-c10)[16] = (c1-c5)[8] */
        tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887));
        /* (c10-c14)[16] = (c5-c7)[8] */
        tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579));

        tmp20 = tmp10 + tmp0;
        tmp27 = tmp10 - tmp0;
        tmp21 = tmp12 + tmp1;
        tmp26 = tmp12 - tmp1;
        tmp22 = tmp13 + tmp2;
        tmp25 = tmp13 - tmp2;
        tmp23 = tmp11 + tmp3;
        tmp24 = tmp11 - tmp3;

        /* Odd part */

        z1 = (long) ws[1];
        z2 = (long) ws[3];
        z3 = (long) ws[5];
        z4 = (long) ws[7];

        tmp11 = z1 + z3;

        tmp1  = MULTIPLY(z1 + z2, FIX(1.353318001));   /* c3 */
        tmp2  = MULTIPLY(tmp11,   FIX(1.247225013));   /* c5 */
        tmp3  = MULTIPLY(z1 + z4, FIX(1.093201867));   /* c7 */
        tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586));   /* c9 */
        tmp11 = MULTIPLY(tmp11,   FIX(0.666655658));   /* c11 */
        tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528));   /* c13 */
        tmp0  = tmp1 + tmp2 + tmp3 -
            MULTIPLY(z1, FIX(2.286341144));        /* c7+c5+c3-c1 */
        tmp13 = tmp10 + tmp11 + tmp12 -
            MULTIPLY(z1, FIX(1.835730603));        /* c9+c11+c13-c15 */
        z1    = MULTIPLY(z2 + z3, FIX(0.138617169));   /* c15 */
        tmp1  += z1 + MULTIPLY(z2, FIX(0.071888074));  /* c9+c11-c3-c15 */
        tmp2  += z1 - MULTIPLY(z3, FIX(1.125726048));  /* c5+c7+c15-c3 */
        z1    = MULTIPLY(z3 - z2, FIX(1.407403738));   /* c1 */
        tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282));  /* c1+c11-c9-c13 */
        tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411));  /* c1+c5+c13-c7 */
        z2    += z4;
        z1    = MULTIPLY(z2, - FIX(0.666655658));      /* -c11 */
        tmp1  += z1;
        tmp3  += z1 + MULTIPLY(z4, FIX(1.065388962));  /* c3+c11+c15-c7 */
        z2    = MULTIPLY(z2, - FIX(1.247225013));      /* -c5 */
        tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809));  /* c1+c5+c9-c13 */
        tmp12 += z2;
        z2    = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
        tmp2  += z2;
        tmp3  += z2;
        z2    = MULTIPLY(z4 - z3, FIX(0.410524528));   /* c13 */
        tmp10 += z2;
        tmp11 += z2;

        /* Final output stage */

        out[JPEG_PIX_SZ*0]  = scale_output(tmp20 + tmp0);
        out[JPEG_PIX_SZ*15] = scale_output(tmp20 - tmp0);
        out[JPEG_PIX_SZ*1]  = scale_output(tmp21 + tmp1);
        out[JPEG_PIX_SZ*14] = scale_output(tmp21 - tmp1);
        out[JPEG_PIX_SZ*2]  = scale_output(tmp22 + tmp2);
        out[JPEG_PIX_SZ*13] = scale_output(tmp22 - tmp2);
        out[JPEG_PIX_SZ*3]  = scale_output(tmp23 + tmp3);
        out[JPEG_PIX_SZ*12] = scale_output(tmp23 - tmp3);
        out[JPEG_PIX_SZ*4]  = scale_output(tmp24 + tmp10);
        out[JPEG_PIX_SZ*11] = scale_output(tmp24 - tmp10);
        out[JPEG_PIX_SZ*5]  = scale_output(tmp25 + tmp11);
        out[JPEG_PIX_SZ*10] = scale_output(tmp25 - tmp11);
        out[JPEG_PIX_SZ*6]  = scale_output(tmp26 + tmp12);
        out[JPEG_PIX_SZ*9]  = scale_output(tmp26 - tmp12);
        out[JPEG_PIX_SZ*7]  = scale_output(tmp27 + tmp13);
        out[JPEG_PIX_SZ*8]  = scale_output(tmp27 - tmp13);
    }
}
#endif

struct idct_entry {
    int scale;
    void (*v_idct)(int16_t *ws, int16_t *end);
    void (*h_idct)(int16_t *ws, unsigned char *out, int16_t *end, int rowstep);
};

static const struct idct_entry idct_tbl[] = {
    { PASS1_BITS, NULL, jpeg_idct1h },
    { PASS1_BITS, jpeg_idct2v, jpeg_idct2h },
    { 0, jpeg_idct4v, jpeg_idct4h },
    { 0, jpeg_idct8v, jpeg_idct8h },
#ifdef HAVE_LCD_COLOR
    { 0, jpeg_idct16v, jpeg_idct16h },
#endif
};

/* JPEG decoder implementation */

#ifdef JPEG_FROM_MEM
INLINE unsigned char *jpeg_getc(struct jpeg* p_jpeg)
{
    if (LIKELY(p_jpeg->len))
    {
        p_jpeg->len--;
        return p_jpeg->data++;
    } else
        return NULL;
}

INLINE bool skip_bytes(struct jpeg* p_jpeg, int count)
{
    if (p_jpeg->len >= (unsigned)count)
    {
        p_jpeg->len -= count;
        p_jpeg->data += count;
        return true;
    } else {
        p_jpeg->data += p_jpeg->len;
        p_jpeg->len = 0;
        return false;
    }
}

INLINE void jpeg_putc(struct jpeg* p_jpeg)
{
    p_jpeg->len++;
    p_jpeg->data--;
}
#else
INLINE void fill_buf(struct jpeg* p_jpeg)
{
        p_jpeg->buf_left = read(p_jpeg->fd, p_jpeg->buf, JPEG_READ_BUF_SIZE);
        p_jpeg->buf_index = 0;
}

static unsigned char *jpeg_getc(struct jpeg* p_jpeg)
{
    if (UNLIKELY(p_jpeg->buf_left < 1))
        fill_buf(p_jpeg);
    if (UNLIKELY(p_jpeg->buf_left < 1))
        return NULL;
    p_jpeg->buf_left--;
    return (p_jpeg->buf_index++) + p_jpeg->buf;
}

INLINE bool skip_bytes_seek(struct jpeg* p_jpeg)
{
    if (UNLIKELY(lseek(p_jpeg->fd, -p_jpeg->buf_left, SEEK_CUR) < 0))
        return false;
    p_jpeg->buf_left = 0;
    return true;
}

static bool skip_bytes(struct jpeg* p_jpeg, int count)
{
    p_jpeg->buf_left -= count;
    p_jpeg->buf_index += count;
    return p_jpeg->buf_left >= 0 || skip_bytes_seek(p_jpeg);
}

static void jpeg_putc(struct jpeg* p_jpeg)
{
    p_jpeg->buf_left++;
    p_jpeg->buf_index--;
}
#endif

#define e_skip_bytes(jpeg, count) \
do {\
    if (UNLIKELY(!skip_bytes((jpeg),(count)))) \
        return -1; \
} while (0)

#define e_getc(jpeg, code) \
({ \
    unsigned char *c; \
    if (UNLIKELY(!(c = jpeg_getc(jpeg)))) \
        return (code); \
    *c; \
})

#define d_getc(jpeg, def) \
({ \
    unsigned char *cp = jpeg_getc(jpeg); \
    unsigned char c = LIKELY(cp) ? *cp : (def); \
    c; \
})

/* Preprocess the JPEG JFIF file */
static int process_markers(struct jpeg* p_jpeg)
{
    unsigned char c;
    int marker_size; /* variable length of marker segment */
    int i, j, n;
    int ret = 0; /* returned flags */

    while ((c = e_getc(p_jpeg, -1)))
    {
        if (c != 0xFF) /* no marker? */
        {
            JDEBUGF("Non-marker data\n");
            jpeg_putc(p_jpeg);
            break; /* exit marker processing */
        }

        c = e_getc(p_jpeg, -1);
        JDEBUGF("marker value %X\n",c);
        switch (c)
        {
        case 0xFF: /* Fill byte */
            ret |= FILL_FF;
        case 0x00: /* Zero stuffed byte - entropy data */
            jpeg_putc(p_jpeg);
            continue;

        case 0xC0: /* SOF Huff  - Baseline DCT */
            {
                JDEBUGF("SOF marker ");
                ret |= SOF0;
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                JDEBUGF("len: %d\n", marker_size);
                n = e_getc(p_jpeg, -1); /* sample precision (= 8 or 12) */
                if (n != 8)
                {
                    return(-1); /* Unsupported sample precision */
                }
                p_jpeg->y_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                p_jpeg->y_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                p_jpeg->x_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                p_jpeg->x_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                JDEBUGF("  dimensions: %dx%d\n", p_jpeg->x_size,
                    p_jpeg->y_size);

                n = (marker_size-2-6)/3;
                if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3))
                {
                    return(-2); /* Unsupported SOF0 component specification */
                }
                for (i=0; i<n; i++)
                {
                    /* Component info */
                    p_jpeg->frameheader[i].ID = e_getc(p_jpeg, -1);
                    p_jpeg->frameheader[i].horizontal_sampling =
                        (c = e_getc(p_jpeg, -1)) >> 4;
                    p_jpeg->frameheader[i].vertical_sampling = c & 0x0F;
                    p_jpeg->frameheader[i].quanttable_select =
                        e_getc(p_jpeg, -1);
                    if (p_jpeg->frameheader[i].horizontal_sampling > 2
                     || p_jpeg->frameheader[i].vertical_sampling > 2)
                    return -3; /* Unsupported SOF0 subsampling */
                }
                p_jpeg->blocks = n;
            }
            break;

        case 0xC1: /* SOF Huff  - Extended sequential DCT*/
        case 0xC2: /* SOF Huff  - Progressive DCT*/
        case 0xC3: /* SOF Huff  - Spatial (sequential) lossless*/
        case 0xC5: /* SOF Huff  - Differential sequential DCT*/
        case 0xC6: /* SOF Huff  - Differential progressive DCT*/
        case 0xC7: /* SOF Huff  - Differential spatial*/
        case 0xC8: /* SOF Arith - Reserved for JPEG extensions*/
        case 0xC9: /* SOF Arith - Extended sequential DCT*/
        case 0xCA: /* SOF Arith - Progressive DCT*/
        case 0xCB: /* SOF Arith - Spatial (sequential) lossless*/
        case 0xCD: /* SOF Arith - Differential sequential DCT*/
        case 0xCE: /* SOF Arith - Differential progressive DCT*/
        case 0xCF: /* SOF Arith - Differential spatial*/
            {
                return (-4); /* other DCT model than baseline not implemented */
            }

        case 0xC4: /* Define Huffman Table(s) */
            {
                ret |= DHT;
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                marker_size -= 2;

                while (marker_size > 17) /* another table */
                {
                    c = e_getc(p_jpeg, -1);
                    marker_size--;
                    int sum = 0;
                    i = c & 0x0F; /* table index */
                    if (i > 1)
                    {
                        return (-5); /* Huffman table index out of range */
                    } else {
                        if (c & 0xF0) /* AC table */
                        {
                            for (j=0; j<16; j++)
                            {
                                p_jpeg->hufftable[i].huffmancodes_ac[j] =
                                    (c = e_getc(p_jpeg, -1));
                                sum += c;
                                marker_size -= 1;
                            }
                            if(16 + sum > AC_LEN)
                                return -10; /* longer than allowed */

                            for (; j < 16 + sum; j++)
                            {
                                p_jpeg->hufftable[i].huffmancodes_ac[j] =
                                    e_getc(p_jpeg, -1);
                                marker_size--;
                            }
                        }
                        else /* DC table */
                        {
                            for (j=0; j<16; j++)
                            {
                                p_jpeg->hufftable[i].huffmancodes_dc[j] =
                                    (c = e_getc(p_jpeg, -1));
                                sum += c;
                                marker_size--;
                            }
                            if(16 + sum > DC_LEN)
                                return -11; /* longer than allowed */

                            for (; j < 16 + sum; j++)
                            {
                                p_jpeg->hufftable[i].huffmancodes_dc[j] =
                                    e_getc(p_jpeg, -1);
                                marker_size--;
                            }
                        }
                    }
                } /* while */
                e_skip_bytes(p_jpeg, marker_size);
            }
            break;

        case 0xCC: /* Define Arithmetic coding conditioning(s) */
            return(-6); /* Arithmetic coding not supported */

        case 0xD8: /* Start of Image */
            JDEBUGF("SOI\n");
            break;
        case 0xD9: /* End of Image */
            JDEBUGF("EOI\n");
            break;
        case 0x01: /* for temp private use arith code */
            JDEBUGF("private\n");
            break; /* skip parameterless marker */


        case 0xDA: /* Start of Scan */
            {
                ret |= SOS;
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                marker_size -= 2;

                n = (marker_size-1-3)/2;
                if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3))
                {
                    return (-7); /* Unsupported SOS component specification */
                }
                marker_size--;
                for (i=0; i<n; i++)
                {
                    p_jpeg->scanheader[i].ID = e_getc(p_jpeg, -1);
                    p_jpeg->scanheader[i].DC_select = (c = e_getc(p_jpeg, -1))
                        >> 4;
                    p_jpeg->scanheader[i].AC_select = c & 0x0F;
                    marker_size -= 2;
                }
                /* skip spectral information */
                e_skip_bytes(p_jpeg, marker_size);
            }
            break;

        case 0xDB: /* Define quantization Table(s) */
            {
                ret |= DQT;
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                marker_size -= 2;

                n = (marker_size)/(QUANT_TABLE_LENGTH+1); /* # of tables */
                for (i=0; i<n; i++)
                {
                    int id = e_getc(p_jpeg, -1); /* ID */
                    marker_size--;
                    if (id >= 4)
                    {
                        return (-8); /* Unsupported quantization table */
                    }
                    /* Read Quantisation table: */
                    for (j=0; j<QUANT_TABLE_LENGTH; j++)
                    {
                        p_jpeg->quanttable[id][j] = e_getc(p_jpeg, -1);
                        marker_size--;
                    }
                }
                e_skip_bytes(p_jpeg, marker_size);
            }
            break;

        case 0xDD: /* Define Restart Interval */
            {
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                marker_size -= 4;
                /* Highbyte */
                p_jpeg->restart_interval = e_getc(p_jpeg, -1) << 8;
                p_jpeg->restart_interval |= e_getc(p_jpeg, -1); /* Lowbyte */
                e_skip_bytes(p_jpeg, marker_size); /* skip segment */
            }
            break;

        case 0xDC: /* Define Number of Lines */
        case 0xDE: /* Define Hierarchical progression */
        case 0xDF: /* Expand Reference Component(s) */
        case 0xE0: /* Application Field 0*/
        case 0xE1: /* Application Field 1*/
        case 0xE2: /* Application Field 2*/
        case 0xE3: /* Application Field 3*/
        case 0xE4: /* Application Field 4*/
        case 0xE5: /* Application Field 5*/
        case 0xE6: /* Application Field 6*/
        case 0xE7: /* Application Field 7*/
        case 0xE8: /* Application Field 8*/
        case 0xE9: /* Application Field 9*/
        case 0xEA: /* Application Field 10*/
        case 0xEB: /* Application Field 11*/
        case 0xEC: /* Application Field 12*/
        case 0xED: /* Application Field 13*/
        case 0xEE: /* Application Field 14*/
        case 0xEF: /* Application Field 15*/
        case 0xFE: /* Comment */
            {
                marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
                marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
                marker_size -= 2;
                JDEBUGF("unhandled marker len %d\n", marker_size);
                e_skip_bytes(p_jpeg, marker_size); /* skip segment */
            }
            break;

        case 0xF0: /* Reserved for JPEG extensions */
        case 0xF1: /* Reserved for JPEG extensions */
        case 0xF2: /* Reserved for JPEG extensions */
        case 0xF3: /* Reserved for JPEG extensions */
        case 0xF4: /* Reserved for JPEG extensions */
        case 0xF5: /* Reserved for JPEG extensions */
        case 0xF6: /* Reserved for JPEG extensions */
        case 0xF7: /* Reserved for JPEG extensions */
        case 0xF8: /* Reserved for JPEG extensions */
        case 0xF9: /* Reserved for JPEG extensions */
        case 0xFA: /* Reserved for JPEG extensions */
        case 0xFB: /* Reserved for JPEG extensions */
        case 0xFC: /* Reserved for JPEG extensions */
        case 0xFD: /* Reserved for JPEG extensions */
        case 0x02: /* Reserved */
        default:
            return (-9); /* Unknown marker */
        } /* switch */
    } /* while */

    return (ret); /* return flags with seen markers */
}

static const struct huffman_table luma_table =
{
    {
        0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
        0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
    },
    {
        0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00,
        0x01,0x7D,0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,
        0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42,
        0xB1,0xC1,0x15,0x52,0xD1,0xF0,0x24,0x33,0x62,0x72,0x82,0x09,0x0A,0x16,
        0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,0x29,0x2A,0x34,0x35,0x36,0x37,
        0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,
        0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,
        0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
        0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,0xA4,0xA5,
        0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,
        0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,
        0xD7,0xD8,0xD9,0xDA,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,
        0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA
    }
};

static const struct huffman_table chroma_table =
{
    {
        0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,
        0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
    },
    {
        0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01,
        0x02,0x77,0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,
        0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1,
        0xC1,0x09,0x23,0x33,0x52,0xF0,0x15,0x62,0x72,0xD1,0x0A,0x16,0x24,0x34,
        0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,0x27,0x28,0x29,0x2A,0x35,0x36,
        0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,
        0x55,0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,
        0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87,
        0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,
        0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,
        0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,
        0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,
        0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA
    }
};

static void default_huff_tbl(struct jpeg* p_jpeg)
{

    MEMCPY(&p_jpeg->hufftable[0], &luma_table, sizeof(luma_table));
    MEMCPY(&p_jpeg->hufftable[1], &chroma_table, sizeof(chroma_table));

    return;
}

/* Compute the derived values for a Huffman table */
static void fix_huff_tbl(int* htbl, struct derived_tbl* dtbl)
{
    int p, i, l, si;
    int lookbits, ctr;
    char huffsize[257];
    unsigned int huffcode[257];
    unsigned int code;

    dtbl->pub = htbl; /* fill in back link */

    /* Figure C.1: make table of Huffman code length for each symbol */
    /* Note that this is in code-length order. */

    p = 0;
    for (l = 1; l <= 16; l++)
    {    /* all possible code length */
        for (i = 1; i <= (int) htbl[l-1]; i++)  /* all codes per length */
            huffsize[p++] = (char) l;
    }
    huffsize[p] = 0;

    /* Figure C.2: generate the codes themselves */
    /* Note that this is in code-length order. */

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p])
    {
        while (((int) huffsize[p]) == si)
        {
            huffcode[p++] = code;
            code++;
        }
        code <<= 1;
        si++;
    }

    /* Figure F.15: generate decoding tables for bit-sequential decoding */

    p = 0;
    for (l = 1; l <= 16; l++)
    {
        if (htbl[l-1])
        {
            /* huffval[] index of 1st symbol of code length l */
            dtbl->valptr[l] = p;
            dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
            p += htbl[l-1];
            dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
        }
        else
        {
            dtbl->maxcode[l] = -1;  /* -1 if no codes of this length */
        }
    }
    dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */

    /* Compute lookahead tables to speed up decoding.
    * First we set all the table entries to 0, indicating "too long";
    * then we iterate through the Huffman codes that are short enough and
    * fill in all the entries that correspond to bit sequences starting
    * with that code.
    */

    MEMSET(dtbl->look_nbits, 0, sizeof(dtbl->look_nbits));

    p = 0;
    for (l = 1; l <= HUFF_LOOKAHEAD; l++)
    {
        for (i = 1; i <= (int) htbl[l-1]; i++, p++)
        {
            /* l = current code's length, p = its index in huffcode[] &
             * huffval[]. Generate left-justified code followed by all possible
             * bit sequences
             */
            lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
            for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--)
            {
                dtbl->look_nbits[lookbits] = l;
                dtbl->look_sym[lookbits] = htbl[16+p];
                lookbits++;
            }
        }
    }
}


/* zag[i] is the natural-order position of the i'th element of zigzag order. */
static const unsigned char zag[] =
{
#ifdef JPEG_IDCT_TRANSPOSE
      0,   8,   1,   2,   9,  16,  24,  17,
     10,   3,   4,  11,  18,  25,  32,  40,
     33,  26,  19,  12,   5,   6,  13,  20,
     27,  34,  41,  48,  56,  49,  42,  35,
     28,  21,  14,   7,  15,  22,  29,  36,
     43,  50,  57,  58,  51,  44,  37,  30,
     23,  31,  38,  45,  52,  59,  60,  53,
     46,  39,  47,  54,  61,  62,  55,  63,
#endif
      0,   1,   8,  16,   9,   2,   3,  10,
     17,  24,  32,  25,  18,  11,   4,   5,
     12,  19,  26,  33,  40,  48,  41,  34,
     27,  20,  13,   6,   7,  14,  21,  28,
     35,  42,  49,  56,  57,  50,  43,  36,
     29,  22,  15,  23,  30,  37,  44,  51,
     58,  59,  52,  45,  38,  31,  39,  46,
     53,  60,  61,  54,  47,  55,  62,  63,
};

/* zig[i] is the the zig-zag order position of the i'th element of natural
 * order, reading left-to-right then top-to-bottom.
 */
static const unsigned char zig[] =
{
     0,  1,  5,  6, 14, 15, 27, 28,
     2,  4,  7, 13, 16, 26, 29, 42,
     3,  8, 12, 17, 25, 30, 41, 43,
     9, 11, 18, 24, 31, 40, 44, 53,
    10, 19, 23, 32, 39, 45, 52, 54,
    20, 22, 33, 38, 46, 51, 55, 60,
    21, 34, 37, 47, 50, 56, 59, 61,
    35, 36, 48, 49, 57, 58, 62, 63
};

/* Reformat some image header data so that the decoder can use it properly. */
INLINE void fix_headers(struct jpeg* p_jpeg)
{
    int i;

    for (i=0; i<4; i++)
        p_jpeg->store_pos[i] = i; /* default ordering */

    /* assignments for the decoding of blocks */
    if (p_jpeg->frameheader[0].horizontal_sampling == 2
        && p_jpeg->frameheader[0].vertical_sampling == 1)
    {   /* 4:2:2 */
        p_jpeg->blocks = 4;
        p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
        p_jpeg->x_phys = p_jpeg->x_mbl * 16;
        p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
        p_jpeg->y_phys = p_jpeg->y_mbl * 8;
        p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 1;
        p_jpeg->mcu_membership[3] = 2;
        p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->tab_membership[3] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 2;
        p_jpeg->subsample_x[2] = 2;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 1;
        p_jpeg->subsample_y[2] = 1;
    }
    if (p_jpeg->frameheader[0].horizontal_sampling == 1
        && p_jpeg->frameheader[0].vertical_sampling == 2)
    {   /* 4:2:2 vertically subsampled */
        p_jpeg->store_pos[1] = 2; /* block positions are mirrored */
        p_jpeg->store_pos[2] = 1;
        p_jpeg->blocks = 4;
        p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
        p_jpeg->x_phys = p_jpeg->x_mbl * 8;
        p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
        p_jpeg->y_phys = p_jpeg->y_mbl * 16;
        p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 1;
        p_jpeg->mcu_membership[3] = 2;
        p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->tab_membership[3] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 1;
        p_jpeg->subsample_x[2] = 1;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 2;
        p_jpeg->subsample_y[2] = 2;
    }
    else if (p_jpeg->frameheader[0].horizontal_sampling == 2
        && p_jpeg->frameheader[0].vertical_sampling == 2)
    {   /* 4:2:0 */
        p_jpeg->blocks = 6;
        p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
        p_jpeg->x_phys = p_jpeg->x_mbl * 16;
        p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
        p_jpeg->y_phys = p_jpeg->y_mbl * 16;
        p_jpeg->mcu_membership[0] = 0;
        p_jpeg->mcu_membership[1] = 0;
        p_jpeg->mcu_membership[2] = 0;
        p_jpeg->mcu_membership[3] = 0;
        p_jpeg->mcu_membership[4] = 1;
        p_jpeg->mcu_membership[5] = 2;
        p_jpeg->tab_membership[0] = 0;
        p_jpeg->tab_membership[1] = 0;
        p_jpeg->tab_membership[2] = 0;
        p_jpeg->tab_membership[3] = 0;
        p_jpeg->tab_membership[4] = 1;
        p_jpeg->tab_membership[5] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 2;
        p_jpeg->subsample_x[2] = 2;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 2;
        p_jpeg->subsample_y[2] = 2;
    }
    else if (p_jpeg->frameheader[0].horizontal_sampling == 1
        && p_jpeg->frameheader[0].vertical_sampling == 1)
    {   /* 4:4:4 */
        /* don't overwrite p_jpeg->blocks */
        p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
        p_jpeg->x_phys = p_jpeg->x_mbl * 8;
        p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
        p_jpeg->y_phys = p_jpeg->y_mbl * 8;
        p_jpeg->mcu_membership[0] = 0;
        p_jpeg->mcu_membership[1] = 1;
        p_jpeg->mcu_membership[2] = 2;
        p_jpeg->tab_membership[0] = 0;
        p_jpeg->tab_membership[1] = 1;
        p_jpeg->tab_membership[2] = 1;
        p_jpeg->subsample_x[0] = 1;
        p_jpeg->subsample_x[1] = 1;
        p_jpeg->subsample_x[2] = 1;
        p_jpeg->subsample_y[0] = 1;
        p_jpeg->subsample_y[1] = 1;
        p_jpeg->subsample_y[2] = 1;
    }
    else
    {
        /* error */
    }

}

INLINE void fix_huff_tables(struct jpeg *p_jpeg)
{
    fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_dc,
        &p_jpeg->dc_derived_tbls[0]);
    fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_ac,
        &p_jpeg->ac_derived_tbls[0]);
    fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_dc,
        &p_jpeg->dc_derived_tbls[1]);
    fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_ac,
        &p_jpeg->ac_derived_tbls[1]);
}

/* Because some of the IDCT routines never multiply by any constants, and
 * therefore do not produce shifted output, we add the shift into the
 * quantization table when one of these IDCT routines is used, rather than
 * have the IDCT shift each value it processes.
 */
INLINE void fix_quant_tables(struct jpeg *p_jpeg)
{
    int shift, i, j;
    for (i = 0; i < 2; i++)
    {
        shift = idct_tbl[p_jpeg->v_scale[i]].scale;
        if (shift)
        {
            for (j = 0; j < 64; j++)
                p_jpeg->quanttable[i][j] <<= shift;
        }
    }
}

/*
* These functions/macros provide the in-line portion of bit fetching.
* Use check_bit_buffer to ensure there are N bits in get_buffer
* before using get_bits, peek_bits, or drop_bits.
*  check_bit_buffer(state,n,action);
*    Ensure there are N bits in get_buffer; if suspend, take action.
*  val = get_bits(n);
*    Fetch next N bits.
*  val = peek_bits(n);
*    Fetch next N bits without removing them from the buffer.
*  drop_bits(n);
*    Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/

static void fill_bit_buffer(struct jpeg* p_jpeg)
{
    unsigned char byte, marker;

    if (p_jpeg->marker_val)
        p_jpeg->marker_ind += 16;
    byte = d_getc(p_jpeg, 0);
    if (UNLIKELY(byte == 0xFF)) /* legal marker can be byte stuffing or RSTm */
    {   /* simplification: just skip the (one-byte) marker code */
        marker = d_getc(p_jpeg, 0);
        if ((marker & ~7) == 0xD0)
        {
            p_jpeg->marker_val = marker;
            p_jpeg->marker_ind = 8;
        }
    }
    p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte;

    byte = d_getc(p_jpeg, 0);
    if (UNLIKELY(byte == 0xFF)) /* legal marker can be byte stuffing or RSTm */
    {   /* simplification: just skip the (one-byte) marker code */
        marker = d_getc(p_jpeg, 0);
        if ((marker & ~7) == 0xD0)
        {
            p_jpeg->marker_val = marker;
            p_jpeg->marker_ind = 0;
        }
    }
    p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte;
    p_jpeg->bitbuf_bits += 16;
#ifdef JPEG_BS_DEBUG
    DEBUGF("read in: %04X\n", p_jpeg->bitbuf & 0xFFFF);
#endif
}

INLINE void check_bit_buffer(struct jpeg *p_jpeg, int nbits)
{
    if (nbits > p_jpeg->bitbuf_bits)
        fill_bit_buffer(p_jpeg);
}

INLINE int get_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
    if (nbits > p_jpeg->bitbuf_bits)
        DEBUGF("bitbuffer underrun\n");
    int mask = BIT_N(p_jpeg->bitbuf_bits - 1);
    int i;
    DEBUGF("get %d bits: ", nbits);
    for (i = 0; i < nbits; i++)
        DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
    DEBUGF("\n");
#endif
    return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits -= nbits))) &
        (BIT_N(nbits)-1);
}

INLINE int peek_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
    int mask = BIT_N(p_jpeg->bitbuf_bits - 1);
    int i;
    DEBUGF("peek %d bits: ", nbits);
    for (i = 0; i < nbits; i++)
        DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
    DEBUGF("\n");
#endif
    return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits - nbits))) &
        (BIT_N(nbits)-1);
}

INLINE void drop_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
    int mask = BIT_N(p_jpeg->bitbuf_bits - 1);
    int i;
    DEBUGF("drop %d bits: ", nbits);
    for (i = 0; i < nbits; i++)
        DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
    DEBUGF("\n");
#endif
    p_jpeg->bitbuf_bits -= nbits;
}

/* re-synchronize to entropy data (skip restart marker) */
static void search_restart(struct jpeg *p_jpeg)
{
    if (p_jpeg->marker_val)
    {
        p_jpeg->marker_val = 0;
        p_jpeg->bitbuf_bits = p_jpeg->marker_ind;
        p_jpeg->marker_ind = 0;
        return;
    }
    unsigned char byte;
    p_jpeg->bitbuf_bits = 0;
    while ((byte = d_getc(p_jpeg, 0xFF)))
    {
        if (byte == 0xff)
        {
            byte = d_getc(p_jpeg, 0xD0);
            if ((byte & ~7) == 0xD0)
            {
                return;
            }
            else
                jpeg_putc(p_jpeg);
        }
    }
}

/* Figure F.12: extend sign bit. */
#if CONFIG_CPU == SH7034
/* SH1 lacks a variable-shift instruction */
#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))

static const int extend_test[16] =   /* entry n is 2**(n-1) */
{
    0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
};

static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{
    0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1
};
#else
/* This saves some code and data size, benchmarks about the same on RAM */
#define HUFF_EXTEND(x,s) \
({ \
    int x__ = x; \
    int s__ = s; \
    x__ & BIT_N(s__- 1) ? x__ : x__ + (-1 << s__) + 1; \
})
#endif

/* Decode a single value */
#define huff_decode_dc(p_jpeg, tbl, s, r) \
{ \
    int nb, look; \
\
    check_bit_buffer((p_jpeg), HUFF_LOOKAHEAD); \
    look = peek_bits((p_jpeg), HUFF_LOOKAHEAD); \
    if ((nb = (tbl)->look_nbits[look]) != 0) \
    { \
        drop_bits((p_jpeg), nb); \
        s = (tbl)->look_sym[look]; \
        check_bit_buffer((p_jpeg), s); \
        r = get_bits((p_jpeg), s); \
    } else { \
        /*  slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */ \
        long code; \
        nb=HUFF_LOOKAHEAD+1; \
        check_bit_buffer((p_jpeg), nb); \
        code = get_bits((p_jpeg), nb); \
        while (code > (tbl)->maxcode[nb]) \
        { \
            code <<= 1; \
            check_bit_buffer((p_jpeg), 1); \
            code |= get_bits((p_jpeg), 1); \
            nb++; \
        } \
        if (nb > 16) /* error in Huffman */ \
        { \
            r = 0; s = 0; /* fake a zero, this is most safe */ \
        } else { \
            s = (tbl)->pub[16 + (tbl)->valptr[nb] + \
                ((int) (code - (tbl)->mincode[nb]))]; \
            check_bit_buffer((p_jpeg), s); \
            r = get_bits((p_jpeg), s); \
        } \
    } /* end slow decode */ \
}

#define huff_decode_ac(p_jpeg, tbl, s) \
{ \
    int nb, look; \
\
    check_bit_buffer((p_jpeg), HUFF_LOOKAHEAD); \
    look = peek_bits((p_jpeg), HUFF_LOOKAHEAD); \
    if ((nb = (tbl)->look_nbits[look]) != 0) \
    { \
        drop_bits((p_jpeg), nb); \
        s = (tbl)->look_sym[look]; \
    } else { \
        /*  slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */ \
        long code; \
        nb=HUFF_LOOKAHEAD+1; \
        check_bit_buffer((p_jpeg), nb); \
        code = get_bits((p_jpeg), nb); \
        while (code > (tbl)->maxcode[nb]) \
        { \
            code <<= 1; \
            check_bit_buffer((p_jpeg), 1); \
            code |= get_bits((p_jpeg), 1); \
            nb++; \
        } \
        if (nb > 16) /* error in Huffman */ \
        { \
            s = 0; /* fake a zero, this is most safe */ \
        } else { \
            s = (tbl)->pub[16 + (tbl)->valptr[nb] + \
                ((int) (code - (tbl)->mincode[nb]))]; \
        } \
    } /* end slow decode */ \
}

static struct img_part *store_row_jpeg(void *jpeg_args)
{
    struct jpeg *p_jpeg = (struct jpeg*) jpeg_args;
#ifdef HAVE_LCD_COLOR
    int mcu_hscale = p_jpeg->h_scale[1];
    int mcu_vscale = p_jpeg->v_scale[1];
#else
    int mcu_hscale = (p_jpeg->h_scale[0] +
        p_jpeg->frameheader[0].horizontal_sampling - 1);
    int mcu_vscale = (p_jpeg->v_scale[0] +
        p_jpeg->frameheader[0].vertical_sampling - 1);
#endif
    unsigned int width = p_jpeg->x_mbl << mcu_hscale;
    unsigned int b_width = width * JPEG_PIX_SZ;
    int height = BIT_N(mcu_vscale);
    int x;
    if (!p_jpeg->mcu_row) /* Need to decode a new row of MCUs */
    {
        p_jpeg->out_ptr = (unsigned char *)p_jpeg->img_buf;
        int store_offs[4];
#ifdef HAVE_LCD_COLOR
        unsigned mcu_width = BIT_N(mcu_hscale);
#endif
        int mcu_offset = JPEG_PIX_SZ << mcu_hscale;
        unsigned char *out = p_jpeg->out_ptr;
        store_offs[p_jpeg->store_pos[0]] = 0;
        store_offs[p_jpeg->store_pos[1]] = JPEG_PIX_SZ << p_jpeg->h_scale[0];
        store_offs[p_jpeg->store_pos[2]] = b_width << p_jpeg->v_scale[0];
        store_offs[p_jpeg->store_pos[3]] = store_offs[1] + store_offs[2];
        /* decoded DCT coefficients */
        int16_t block[IDCT_WS_SIZE] __attribute__((aligned(8)));
        for (x = 0; x < p_jpeg->x_mbl; x++)
        {
            int blkn;
            for (blkn = 0; blkn < p_jpeg->blocks; blkn++)
            {
                int ci = p_jpeg->mcu_membership[blkn]; /* component index */
                int ti = p_jpeg->tab_membership[blkn]; /* table index */
#ifdef JPEG_IDCT_TRANSPOSE
                bool transpose = p_jpeg->v_scale[!!ci] > 2;
#endif
                int k = 1; /* coefficient index */
                int s, r; /* huffman values */
                struct derived_tbl* dctbl = &p_jpeg->dc_derived_tbls[ti];
                struct derived_tbl* actbl = &p_jpeg->ac_derived_tbls[ti];

                /* Section F.2.2.1: decode the DC coefficient difference */
                huff_decode_dc(p_jpeg, dctbl, s, r);

#ifndef HAVE_LCD_COLOR
                if (!ci)
#endif
                {
                    s = HUFF_EXTEND(r, s);
#ifdef HAVE_LCD_COLOR
                    p_jpeg->last_dc_val[ci] += s;
                    /* output it (assumes zag[0] = 0) */
                    block[0] = MULTIPLY16(p_jpeg->last_dc_val[ci],
                        p_jpeg->quanttable[!!ci][0]);
#else
                    p_jpeg->last_dc_val += s;
                    /* output it (assumes zag[0] = 0) */
                    block[0] = MULTIPLY16(p_jpeg->last_dc_val,
                        p_jpeg->quanttable[0][0]);
#endif
                    /* coefficient buffer must be cleared */
                    MEMSET(block+1, 0, p_jpeg->zero_need[!!ci] * sizeof(int));
                    /* Section F.2.2.2: decode the AC coefficients */
                    while(true)
                    {
                        huff_decode_ac(p_jpeg, actbl, s);
                        r = s >> 4;
                        s &= 15;
                        k += r;
                        if (s)
                        {
                            check_bit_buffer(p_jpeg, s);
                            if (k >= p_jpeg->k_need[!!ci])
                                goto skip_rest;
                            r = get_bits(p_jpeg, s);
                            r = HUFF_EXTEND(r, s);
                            r = MULTIPLY16(r, p_jpeg->quanttable[!!ci][k]);
#ifdef JPEG_IDCT_TRANSPOSE
                            block[zag[transpose ? k : k + 64]] = r ;
#else
                            block[zag[k]] = r ;
#endif
                        }
                        else
                        {
                            if (r != 15)
                                goto block_end;
                        }
                        if ((++k) & 64)
                            goto block_end;
                    }  /* for k */
                }
                for (; k < 64; k++)
                {
                    huff_decode_ac(p_jpeg, actbl, s);
                    r = s >> 4;
                    s &= 15;

                    if (s)
                    {
                        k += r;
                        check_bit_buffer(p_jpeg, s);
skip_rest:
                        drop_bits(p_jpeg, s);
                    }
                    else
                    {
                        if (r != 15)
                            break;
                        k += r;
                    }
                }  /* for k */
block_end:
#ifndef HAVE_LCD_COLOR
                if (!ci)
#endif
                {
                    int idct_cols = BIT_N(MIN(p_jpeg->h_scale[!!ci], 3));
                    int idct_rows = BIT_N(p_jpeg->v_scale[!!ci]);
                    unsigned char *b_out = out + (ci ? ci : store_offs[blkn]);
                    if (idct_tbl[p_jpeg->v_scale[!!ci]].v_idct)
#ifdef JPEG_IDCT_TRANSPOSE
                        idct_tbl[p_jpeg->v_scale[!!ci]].v_idct(block,
                            transpose ? block + 8 * idct_cols
                                      : block + idct_cols);
                    uint16_t * h_block = transpose ? block + 64 : block;
                    idct_tbl[p_jpeg->h_scale[!!ci]].h_idct(h_block, b_out,
                        h_block + idct_rows * 8, b_width);
#else
                        idct_tbl[p_jpeg->v_scale[!!ci]].v_idct(block,
                            block + idct_cols);
                    idct_tbl[p_jpeg->h_scale[!!ci]].h_idct(block, b_out,
                        block + idct_rows * 8, b_width);
#endif
                }
            } /* for blkn */
            /* don't starve other threads while an MCU row decodes */
            yield();
#ifdef HAVE_LCD_COLOR
            unsigned int xp;
            int yp;
            unsigned char *row = out;
            if (p_jpeg->blocks == 1)
            {
                for (yp = 0; yp < height; yp++, row += b_width)
                {
                    unsigned char *px = row;
                    for (xp = 0; xp < mcu_width; xp++, px += JPEG_PIX_SZ)
                    {
                        px[1] = px[2] = px[0];
                    }
                }
            }
#endif
            out += mcu_offset;
            if (p_jpeg->restart_interval && --p_jpeg->restart == 0)
            {   /* if a restart marker is due: */
                p_jpeg->restart = p_jpeg->restart_interval; /* count again */
                search_restart(p_jpeg); /* align the bitstream */
#ifdef HAVE_LCD_COLOR
                p_jpeg->last_dc_val[0] = p_jpeg->last_dc_val[1] =
                                 p_jpeg->last_dc_val[2] = 0; /* reset decoder */
#else
                p_jpeg->last_dc_val = 0;
#endif
            }
        }
    } /* if !p_jpeg->mcu_row */
    p_jpeg->mcu_row = (p_jpeg->mcu_row + 1) & (height - 1);
    p_jpeg->part.len = width;
    p_jpeg->part.buf = (jpeg_pix_t *)p_jpeg->out_ptr;
    p_jpeg->out_ptr += b_width;
    return &(p_jpeg->part);
}

/******************************************************************************
 * read_jpeg_file()
 *
 * Reads a JPEG file and puts the data in rockbox format in *bitmap.
 *
 *****************************************************************************/
#ifndef JPEG_FROM_MEM
int read_jpeg_file(const char* filename,
                   struct bitmap *bm,
                   int maxsize,
                   int format,
                   const struct custom_format *cformat)
{
    int fd, ret;
    fd = open(filename, O_RDONLY);
    JDEBUGF("read_jpeg_file: filename: %s buffer len: %d cformat: %p\n",
        filename, maxsize, cformat);
    /* Exit if file opening failed */
    if (fd < 0) {
        DEBUGF("read_jpeg_file: can't open '%s', rc: %d\n", filename, fd);
        return fd * 10 - 1;
    }

    ret = read_jpeg_fd(fd, bm, maxsize, format, cformat);
    close(fd);
    return ret;
}
#endif

static int calc_scale(int in_size, int out_size)
{
    int scale = 0;
    out_size <<= 3;
    for (scale = 0; scale < 3; scale++)
    {
        if (out_size <= in_size)
            break;
        else
            in_size <<= 1;
    }
    return scale;
}

#ifdef JPEG_FROM_MEM
int get_jpeg_dim_mem(unsigned char *data, unsigned long len,
                     struct dim *size)
{
    struct jpeg *p_jpeg = &jpeg;
    memset(p_jpeg, 0, sizeof(struct jpeg));
    p_jpeg->data = data;
    p_jpeg->len = len;
    int status = process_markers(p_jpeg);
    if (status < 0)
        return status;
    if ((status & (DQT | SOF0)) != (DQT | SOF0))
        return -(status * 16);
    size->width = p_jpeg->x_size;
    size->height = p_jpeg->y_size;
    return 0;
}

int decode_jpeg_mem(unsigned char *data, unsigned long len,
#else
int read_jpeg_fd(int fd,
#endif
                 struct bitmap *bm,
                 int maxsize,
                 int format,
                 const struct custom_format *cformat)
{
    bool resize = false, dither = false;
    struct rowset rset;
    struct dim src_dim;
    int status;
    int bm_size;
#ifdef JPEG_FROM_MEM
    struct jpeg *p_jpeg = &jpeg;
#else
    struct jpeg *p_jpeg = (struct jpeg*)bm->data;
    int tmp_size = maxsize;
    ALIGN_BUFFER(p_jpeg, tmp_size, sizeof(int));
    /* not enough memory for our struct jpeg */
    if ((size_t)tmp_size < sizeof(struct jpeg))
        return -1;
#endif
    memset(p_jpeg, 0, sizeof(struct jpeg));
#ifdef JPEG_FROM_MEM
    p_jpeg->data = data;
    p_jpeg->len = len;
#else
    p_jpeg->fd = fd;
#endif
    status = process_markers(p_jpeg);
#ifndef JPEG_FROM_MEM
    JDEBUGF("position in file: %d buffer fill: %d\n",
        (int)lseek(p_jpeg->fd, 0, SEEK_CUR), p_jpeg->buf_left);
#endif
    if (status < 0)
        return status;
    if ((status & (DQT | SOF0)) != (DQT | SOF0))
        return -(status * 16);
    if (!(status & DHT)) /* if no Huffman table present: */
        default_huff_tbl(p_jpeg); /* use default */
    fix_headers(p_jpeg); /* derive Huffman and other lookup-tables */
    src_dim.width = p_jpeg->x_size;
    src_dim.height = p_jpeg->y_size;
    if (format & FORMAT_RESIZE)
        resize = true;
    if (format & FORMAT_DITHER)
        dither = true;
    if (resize) {
        struct dim resize_dim = {
            .width = bm->width,
            .height = bm->height,
        };
        if (format & FORMAT_KEEP_ASPECT)
            recalc_dimension(&resize_dim, &src_dim);
        bm->width = resize_dim.width;
        bm->height = resize_dim.height;
    } else {
        bm->width = p_jpeg->x_size;
        bm->height = p_jpeg->y_size;
    }
    p_jpeg->h_scale[0] = calc_scale(p_jpeg->x_size, bm->width);
    p_jpeg->v_scale[0] = calc_scale(p_jpeg->y_size, bm->height);
    JDEBUGF("luma IDCT size: %dx%d\n", BIT_N(p_jpeg->h_scale[0]),
        BIT_N(p_jpeg->v_scale[0]));
    if ((p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3 == bm->width &&
        (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3 == bm->height)
        resize = false;
#ifdef HAVE_LCD_COLOR
    p_jpeg->h_scale[1] = p_jpeg->h_scale[0] +
        p_jpeg->frameheader[0].horizontal_sampling - 1;
    p_jpeg->v_scale[1] = p_jpeg->v_scale[0] +
        p_jpeg->frameheader[0].vertical_sampling - 1;
    JDEBUGF("chroma IDCT size: %dx%d\n", BIT_N(p_jpeg->h_scale[1]),
        BIT_N(p_jpeg->v_scale[1]));
#endif
    JDEBUGF("scaling from %dx%d -> %dx%d\n",
        (p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3,
        (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3,
        bm->width, bm->height);
    fix_quant_tables(p_jpeg);
    int decode_w = BIT_N(p_jpeg->h_scale[0]) - 1;
    int decode_h = BIT_N(p_jpeg->v_scale[0]) - 1;
    src_dim.width = (p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3;
    src_dim.height = (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3;
#ifdef JPEG_IDCT_TRANSPOSE
    if (p_jpeg->v_scale[0] > 2)
        p_jpeg->zero_need[0] = (decode_w << 3) + decode_h;
    else
#endif
        p_jpeg->zero_need[0] = (decode_h << 3) + decode_w;
    p_jpeg->k_need[0] = zig[(decode_h << 3) + decode_w];
    JDEBUGF("need luma components to %d\n", p_jpeg->k_need[0]);
#ifdef HAVE_LCD_COLOR
    decode_w = BIT_N(MIN(p_jpeg->h_scale[1],3)) - 1;
    decode_h = BIT_N(MIN(p_jpeg->v_scale[1],3)) - 1;
    if (p_jpeg->v_scale[1] > 2)
        p_jpeg->zero_need[1] = (decode_w << 3) + decode_h;
    else
        p_jpeg->zero_need[1] = (decode_h << 3) + decode_w;
    p_jpeg->k_need[1] = zig[(decode_h << 3) + decode_w];
    JDEBUGF("need chroma components to %d\n", p_jpeg->k_need[1]);
#endif
    if (cformat)
        bm_size = cformat->get_size(bm);
    else
        bm_size = BM_SIZE(bm->width,bm->height,FORMAT_NATIVE,false);
    if (bm_size > maxsize)
        return -1;
    char *buf_start = (char *)bm->data + bm_size;
    char *buf_end = (char *)bm->data + maxsize;
    maxsize = buf_end - buf_start;
#ifndef JPEG_FROM_MEM
    ALIGN_BUFFER(buf_start, maxsize, sizeof(uint32_t));
    if (maxsize < (int)sizeof(struct jpeg))
        return -1;
    memmove(buf_start, p_jpeg, sizeof(struct jpeg));
    p_jpeg = (struct jpeg *)buf_start;
    buf_start += sizeof(struct jpeg);
    maxsize = buf_end - buf_start;
#endif
    fix_huff_tables(p_jpeg);
#ifdef HAVE_LCD_COLOR
    int decode_buf_size = (p_jpeg->x_mbl << p_jpeg->h_scale[1])
        << p_jpeg->v_scale[1];
#else
    int decode_buf_size = (p_jpeg->x_mbl << p_jpeg->h_scale[0])
        << p_jpeg->v_scale[0];
    decode_buf_size <<= p_jpeg->frameheader[0].horizontal_sampling +
        p_jpeg->frameheader[0].vertical_sampling - 2;
#endif
    decode_buf_size *= JPEG_PIX_SZ;
    JDEBUGF("decode buffer size: %d\n", decode_buf_size);
    p_jpeg->img_buf = (jpeg_pix_t *)buf_start;
    if (buf_end - buf_start < decode_buf_size)
        return -1;
    buf_start += decode_buf_size;
    maxsize = buf_end - buf_start;
    memset(p_jpeg->img_buf, 0, decode_buf_size);
    p_jpeg->mcu_row = 0;
    p_jpeg->restart = p_jpeg->restart_interval;
    rset.rowstart = 0;
    rset.rowstop = bm->height;
    rset.rowstep = 1;
    p_jpeg->resize = resize;
    if (resize)
    {
        if (resize_on_load(bm, dither, &src_dim, &rset, buf_start, maxsize,
            cformat, IF_PIX_FMT(p_jpeg->blocks == 1 ? 0 : 1,) store_row_jpeg,
            p_jpeg))
            return bm_size;
    } else {
        int row;
        struct scaler_context ctx = {
            .bm = bm,
            .dither = dither,
        };
#if LCD_DEPTH > 1
        void (*output_row_8)(uint32_t, void*, struct scaler_context*) =
            output_row_8_native;
#elif defined(PLUGIN)
        void (*output_row_8)(uint32_t, void*, struct scaler_context*) = NULL;
#endif
#if LCD_DEPTH > 1 || defined(PLUGIN)
        if (cformat)
            output_row_8 = cformat->output_row_8;
#endif
        struct img_part *part;
        for (row = 0; row < bm->height; row++)
        {
            part = store_row_jpeg(p_jpeg);
#ifdef HAVE_LCD_COLOR
            if (p_jpeg->blocks > 1)
            {
                struct uint8_rgb *qp = part->buf;
                struct uint8_rgb *end = qp + bm->width;
                uint8_t y, u, v;
                unsigned r, g, b;
                for (; qp < end; qp++)
                {
                    y = qp->blue;
                    u = qp->green;
                    v = qp->red;
                    yuv_to_rgb(y, u, v, &r, &g, &b);
                    qp->red = r;
                    qp->blue = b;
                    qp->green = g;
                }
            }
#endif
            output_row_8(row, part->buf, &ctx);
        }
        return bm_size;
    }
    return 0;
}

/**************** end JPEG code ********************/