summaryrefslogtreecommitdiffstats
path: root/firmware/drivers/ata_mmc.c
blob: d75309547fde6da38cc82186f0b276487d6ec7dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2004 by Jens Arnold
 *
 * All files in this archive are subject to the GNU General Public License.
 * See the file COPYING in the source tree root for full license agreement.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include <stdbool.h>
#include "ata.h"
#include "ata_mmc.h"
#include "kernel.h"
#include "thread.h"
#include "led.h"
#include "sh7034.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "usb.h"
#include "power.h"
#include "string.h"
#include "hwcompat.h"
#include "adc.h"
#include "bitswap.h"

#define SECTOR_SIZE     512

/* Command definitions */
#define CMD_GO_IDLE_STATE        0x40  /* R1 */
#define CMD_SEND_OP_COND         0x41  /* R1 */
#define CMD_SEND_CSD             0x49  /* R1 */
#define CMD_SEND_CID             0x4a  /* R1 */
#define CMD_STOP_TRANSMISSION    0x4c  /* R1 */
#define CMD_SEND_STATUS          0x4d  /* R2 */
#define CMD_READ_SINGLE_BLOCK    0x51  /* R1 */
#define CMD_READ_MULTIPLE_BLOCK  0x52  /* R1 */
#define CMD_WRITE_BLOCK          0x58  /* R1b */
#define CMD_WRITE_MULTIPLE_BLOCK 0x59  /* R1b */
#define CMD_READ_OCR             0x7a  /* R3 */

/* Response formats:
   R1  = single byte, msb=0, various error flags
   R1b = R1 + busy token(s)
   R2  = 2 bytes (1st byte identical to R1), additional flags
   R3  = 5 bytes (R1 + OCR register)
*/

#define R1_PARAMETER_ERR 0x40
#define R1_ADDRESS_ERR   0x20
#define R1_ERASE_SEQ_ERR 0x10
#define R1_COM_CRC_ERR   0x08
#define R1_ILLEGAL_CMD   0x04
#define R1_ERASE_RESET   0x02
#define R1_IN_IDLE_STATE 0x01

#define R2_OUT_OF_RANGE  0x80
#define R2_ERASE_PARAM   0x40
#define R2_WP_VIOLATION  0x20
#define R2_CARD_ECC_FAIL 0x10
#define R2_CC_ERROR      0x08
#define R2_ERROR         0x04
#define R2_ERASE_SKIP    0x02
#define R2_CARD_LOCKED   0x01

/* Data start tokens */

#define DT_START_BLOCK          0xfe
#define DT_START_WRITE_MULTIPLE 0xfc
#define DT_STOP_TRAN            0xfd

/* for compatibility */
bool old_recorder = false; /* FIXME: get rid of this cross-dependency */
int ata_spinup_time = 0;
char ata_device = 0; /* device 0 (master) or 1 (slave) */
int ata_io_address = 0; /* 0x300 or 0x200, only valid on recorder */
long last_disk_activity = -1;

/* private variables */

static struct mutex mmc_mutex;

static bool initialized = false;
static bool delayed_write = false;
static unsigned char delayed_sector[SECTOR_SIZE];
static int delayed_sector_num;

static enum {
    SER_POLL_WRITE,
    SER_POLL_READ,
    SER_DISABLED
} serial_mode;

static const unsigned char dummy[] = {
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

/* 2 buffers for writing, include start token and dummy crc and an extra
 * byte to keep word alignment */
static unsigned char sector_buffer[2][(SECTOR_SIZE+4)];
static int current_buffer = 0;

static tCardInfo card_info[2];
static int current_card = 0;
static bool last_mmc_status = false;
static int countdown;  /* for mmc switch debouncing */

/* private function declarations */

static int select_card(int card_no);
static void deselect_card(void);
static void setup_sci1(int bitrate_register);
static void set_sci1_poll_read(void);
static void write_transfer(const unsigned char *buf, int len)
            __attribute__ ((section(".icode")));
static void read_transfer(unsigned char *buf, int len)
            __attribute__ ((section(".icode")));
static unsigned char poll_byte(int timeout);
static unsigned char poll_busy(int timeout);
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response);
static int receive_cxd(unsigned char *buf);
static int initialize_card(int card_no);
static int receive_sector(unsigned char *inbuf, unsigned char *swapbuf,
                          int timeout);
static void swapcopy_sector(const unsigned char *buf);
static int send_sector(const unsigned char *nextbuf, int timeout);
static int send_single_sector(const unsigned char *buf, int timeout);

static void mmc_tick(void);

/* implementation */

void mmc_select_clock(int card_no)
{
    /* set clock gate for external card / reset for internal card if the
     * MMC clock polarity bit is 0, vice versa if it is 1 */
    if ((card_no != 0) ^ ((read_hw_mask() & MMC_CLOCK_POLARITY) != 0))
        or_b(0x10, &PADRH);       /* set clock gate PA12 */
    else
        and_b(~0x10, &PADRH);     /* clear clock gate PA12 */
}

static int select_card(int card_no)
{
    mmc_select_clock(card_no);
    last_disk_activity = current_tick;

    if (!card_info[card_no].initialized)
    {
        setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */
        write_transfer(dummy, 10); /* allow the card to synchronize */
        while (!(SSR1 & SCI_TEND));
    }

    if (card_no == 0)             /* internal */
        and_b(~0x04, &PADRH);     /* assert CS */
    else                          /* external */
        and_b(~0x02, &PADRH);     /* assert CS */

    if (card_info[card_no].initialized)
    {
        setup_sci1(card_info[card_no].bitrate_register);
        return 0;
    }
    else
    {
        return initialize_card(card_no);
    }
}

static void deselect_card(void)
{
    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */
    or_b(0x06, &PADRH);           /* deassert CS (both cards) */

    last_disk_activity = current_tick;
}

static void setup_sci1(int bitrate_register)
{
    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */

    SCR1 = 0;                     /* disable serial port */
    SMR1 = SYNC_MODE;             /* no prescale */
    BRR1 = bitrate_register;
    SSR1 = 0;

    SCR1 = SCI_TE;                /* enable transmitter */
    serial_mode = SER_POLL_WRITE;
}

static void set_sci1_poll_read(void)
{
    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */
    SCR1 = 0;                     /* disable transmitter (& receiver) */
    SCR1 = (SCI_TE|SCI_RE);       /* re-enable transmitter & receiver */
    while (!(SSR1 & SCI_TEND));   /* wait for SCI init completion (!) */
    serial_mode = SER_POLL_READ;
    TDR1 = 0xFF;                  /* send do-nothing while reading */
}

static void write_transfer(const unsigned char *buf, int len)
{
    const unsigned char *buf_end = buf + len;
    register unsigned char data;

    if (serial_mode != SER_POLL_WRITE)
    {
        while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
        SCR1 = 0;                  /* disable transmitter & receiver */
        SSR1 = 0;                  /* clear all flags */
        SCR1 = SCI_TE;             /* enable transmitter only */
        serial_mode = SER_POLL_WRITE;
    }

    while (buf < buf_end)
    {
        data = fliptable[(signed char)(*buf++)]; /* bitswap */
        while (!(SSR1 & SCI_TDRE));              /* wait for end of transfer */
        TDR1 = data;                             /* write byte */
        SSR1 = 0;                                /* start transmitting */
    }
}

/* don't call this with len == 0 */
static void read_transfer(unsigned char *buf, int len)
{
    unsigned char *buf_end = buf + len - 1;
    register signed char data;

    if (serial_mode != SER_POLL_READ)
        set_sci1_poll_read();

    SSR1 = 0;                     /* start receiving first byte */
    while (buf < buf_end)
    {
        while (!(SSR1 & SCI_RDRF)); /* wait for data */
        data = RDR1;                /* read byte */
        SSR1 = 0;                   /* start receiving */
        *buf++ = fliptable[data];   /* bitswap */
    }
    while (!(SSR1 & SCI_RDRF));     /* wait for last byte */
    *buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */
}

/* returns 0xFF on timeout, timeout is in bytes */
static unsigned char poll_byte(int timeout) 
{
    int i;
    unsigned char data = 0;       /* stop the compiler complaining */

    if (serial_mode != SER_POLL_READ)
        set_sci1_poll_read();

    i = 0;
    do {
        SSR1 = 0;                   /* start receiving */
        while (!(SSR1 & SCI_RDRF)); /* wait for data */
        data = RDR1;                /* read byte */
    } while ((data == 0xFF) && (++i < timeout));

    return fliptable[(signed char)data];
}

/* returns 0 on timeout, timeout is in bytes */
static unsigned char poll_busy(int timeout) 
{
    int i;
    unsigned char data, dummy;
    
    if (serial_mode != SER_POLL_READ)
        set_sci1_poll_read();

    /* get data response */
    SSR1 = 0;                     /* start receiving */
    while (!(SSR1 & SCI_RDRF));   /* wait for data */
    data = fliptable[(signed char)(RDR1)];  /* read byte */

    /* wait until the card is ready again */
    i = 0;
    do {
        SSR1 = 0;                   /* start receiving */
        while (!(SSR1 & SCI_RDRF)); /* wait for data */
        dummy = RDR1;               /* read byte */
    } while ((dummy != 0xFF) && (++i < timeout));
    
    return (dummy == 0xFF) ? data : 0;
}

/* Send MMC command and get response */
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response)
{
    unsigned char command[] = {0x40, 0x00, 0x00, 0x00, 0x00, 0x95, 0xFF};

    command[0] = cmd;
    
    if (parameter != 0)
    {
        command[1] = (parameter >> 24) & 0xFF;
        command[2] = (parameter >> 16) & 0xFF;
        command[3] = (parameter >> 8) & 0xFF;
        command[4] = parameter & 0xFF;
    }
    
    write_transfer(command, 7);

    response[0] = poll_byte(20);

    if (response[0] != 0x00)
    {
        write_transfer(dummy, 1);
        return -10;
    }

    switch (cmd)
    {
        case CMD_SEND_CSD:        /* R1 response, leave open */
        case CMD_SEND_CID:
        case CMD_READ_SINGLE_BLOCK:
        case CMD_READ_MULTIPLE_BLOCK:
            break;
            
        case CMD_SEND_STATUS:     /* R2 response, close with dummy */
            read_transfer(response + 1, 1);
            write_transfer(dummy, 1);
            break;
            
        case CMD_READ_OCR:        /* R3 response, close with dummy */
            read_transfer(response + 1, 4);
            write_transfer(dummy, 1);
            break;

        default:                  /* R1 response, close with dummy */
            write_transfer(dummy, 1);
            break;                /* also catches block writes */
    }

    return 0;
}

/* Receive CID/ CSD data (16 bytes) */
static int receive_cxd(unsigned char *buf)
{
    if (poll_byte(20) != DT_START_BLOCK)
    {
        write_transfer(dummy, 1);
        return -11;               /* not start of data */
    }
    
    read_transfer(buf, 16);
    write_transfer(dummy, 3);     /* 2 bytes dontcare crc + 1 byte trailer */
    return 0;
}

/* helper function to extract n (<=32) bits from an arbitrary position.
   counting from MSB to LSB */
unsigned long mmc_extract_bits(
    const unsigned long *p, /* the start of the bitfield array */
    unsigned int start,     /* bit no. to start reading  */
    unsigned int size)      /* how many bits to read */
{
    unsigned int bit_index;
    unsigned int bits_to_use;
    unsigned long mask;
    unsigned long result;

    if (size == 1)
    {   /* short cut */
        return ((p[start/32] >> (31 - (start % 32))) & 1);
    }

    result = 0;
    while (size)
    {
        bit_index = start % 32;
        bits_to_use = MIN(32 - bit_index, size);
        mask = 0xFFFFFFFF >> (32 - bits_to_use);

        result <<= bits_to_use; /* start last round */
        result |= (p[start/32] >> (32 - bits_to_use - bit_index)) & mask;

        start += bits_to_use;
        size -= bits_to_use;
    }

    return result;
}

static int initialize_card(int card_no)
{
    int i, temp;
    unsigned char response[5];
    tCardInfo *card = &card_info[card_no];

    static const char mantissa[] = {  /* *10 */
        0,  10, 12, 13, 15, 20, 25, 30,
        35, 40, 45, 50, 55, 60, 70, 80
    };
    static const int exponent[] = {  /* use varies */
        1, 10, 100, 1000, 10000, 100000, 1000000,
        10000000, 100000000, 1000000000
    };

    /* switch to SPI mode */
    send_cmd(CMD_GO_IDLE_STATE, 0, response);
    if (response[0] != 0x01)
        return -1;                /* error response */

    /* initialize card */
    for (i = 0; i < 100; i++)     /* timeout 1 sec */
    {
        sleep(1);
        if (send_cmd(CMD_SEND_OP_COND, 0, response) == 0)
            break;
    }
    if (response[0] != 0x00)
        return -2;                /* not ready */
        
    /* get OCR register */
    if (send_cmd(CMD_READ_OCR, 0, response))
        return -3;
    card->ocr = (response[1] << 24) + (response[2] << 16)
              + (response[3] << 8) + response[4];
        
    /* check voltage */
    if (!(card->ocr & 0x00100000)) /* 3.2 .. 3.3 V */
        return -4;
    
    /* get CSD register */
    if (send_cmd(CMD_SEND_CSD, 0, response))
        return -5;
    if (receive_cxd((unsigned char*)card->csd))
        return -6;

    /* check block size */
    if ((1 << mmc_extract_bits(card->csd, 44, 4)) != SECTOR_SIZE)
        return -7;

    /* max transmission speed, clock divider */
    temp = mmc_extract_bits(card->csd, 29, 3);
    temp = (temp > 3) ? 3 : temp;
    card->speed = mantissa[mmc_extract_bits(card->csd, 25, 4)]
                * exponent[temp + 4];
    card->bitrate_register = (FREQ/4-1) / card->speed;

    /* NSAC, TSAC, read timeout */
    card->nsac = 100 * mmc_extract_bits(card->csd, 16, 8);
    card->tsac = mantissa[mmc_extract_bits(card->csd, 9, 4)];
    temp = mmc_extract_bits(card->csd, 13, 3);
    card->read_timeout = ((FREQ/4) / (card->bitrate_register + 1)
                         * card->tsac / exponent[9 - temp]
                         + (10 * card->nsac));
    card->read_timeout /= 8;      /* clocks -> bytes */
    card->tsac *= exponent[temp];

    /* r2w_factor, write timeout */
    temp = mmc_extract_bits(card->csd, 99, 3);
    temp = (temp > 5) ? 5 : temp;
    card->r2w_factor = 1 << temp;
    card->write_timeout = card->read_timeout * card->r2w_factor;

    /* switch to full speed */
    setup_sci1(card->bitrate_register);
    
    /* get CID register */
    if (send_cmd(CMD_SEND_CID, 0, response))
        return -8;
    if (receive_cxd((unsigned char*)card->cid))
        return -9;

    card->initialized = true;
    return 0;
}

tCardInfo *mmc_card_info(int card_no)
{
    tCardInfo *card = &card_info[card_no];
    
    if (!card->initialized && ((card_no == 0) || mmc_detect()))
    {
        mutex_lock(&mmc_mutex);
        select_card(card_no);
        deselect_card();
        mutex_unlock(&mmc_mutex);
    }
    return card;
}

/* Receive one sector with dma, possibly swapping the previously received
 * sector in the background */
static int receive_sector(unsigned char *inbuf, unsigned char *swapbuf, 
                          int timeout)
{
    if (poll_byte(timeout) != DT_START_BLOCK)
    {
        write_transfer(dummy, 1);
        return -12;               /* not start of data */
    }
    
    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */

    SCR1 = 0;                     /* disable serial */
    SSR1 = 0;                     /* clear all flags */
    
    /* setup DMA channel 2 */
    CHCR2 = 0;                    /* disable */
    SAR2 = RDR1_ADDR;
    DAR2 = (unsigned long) inbuf;
    DTCR2 = SECTOR_SIZE;
    CHCR2 = 0x4601;               /* fixed source address, RXI1, enable */
    DMAOR = 0x0001;
    SCR1 = (SCI_RE|SCI_RIE);      /* kick off DMA */
    
    /* dma receives 2 bytes more than DTCR2, but the last 2 bytes are not
     * stored. The first extra byte is available from RDR1 after the DMA ends,
     * the second one is lost because of the SCI overrun. However, this 
     * behaviour conveniently discards the crc. */

    if (swapbuf != NULL)          /* bitswap previous sector */
        bitswap(swapbuf, SECTOR_SIZE);
    yield();                      /* be nice */

    while (!(CHCR2 & 0x0002));    /* wait for end of DMA */
    while (!(SSR1 & SCI_ORER));   /* wait for the trailing bytes */
    SCR1 = 0;
    serial_mode = SER_DISABLED;

    write_transfer(dummy, 1);     /* send trailer */
    return 0;
}

/* copies one sector into the next-current write buffer, then bitswaps */
static void swapcopy_sector(const unsigned char *buf)
{
    unsigned char *curbuf;

    current_buffer ^= 1;          /* toggles between 0 and 1 */

    curbuf = sector_buffer[current_buffer];
    curbuf[1] = DT_START_WRITE_MULTIPLE;
    curbuf[(SECTOR_SIZE+2)] = curbuf[(SECTOR_SIZE+3)] = 0xFF; /* dummy crc */
    memcpy(curbuf + 2, buf, SECTOR_SIZE);
    bitswap(curbuf + 1, (SECTOR_SIZE+1));
}

/* Send one sector with dma from the current sector buffer, possibly preparing
 * the next sector within the other sector buffer in the background. Use
 * for multisector transfer only */
static int send_sector(const unsigned char *nextbuf, int timeout)
{
    int ret = 0;

    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */

    SCR1 = 0;                     /* disable serial */
    SSR1 = 0;                     /* clear all flags */

    /* setup DMA channel 2 */
    CHCR2 = 0;                    /* disable */
    SAR2 = (unsigned long)(sector_buffer[current_buffer] + 1);
    DAR2 = TDR1_ADDR;
    DTCR2 = (SECTOR_SIZE+3);
    CHCR2 = 0x1701;               /* fixed dest. address, TXI1, enable */
    DMAOR = 0x0001;
    SCR1 = (SCI_TE|SCI_TIE);      /* kick off DMA */

    if (nextbuf != NULL)          /* prepare next sector */
        swapcopy_sector(nextbuf);
    yield();                      /* be nice */

    while (!(CHCR2 & 0x0002));    /* wait for end of DMA */
    while (!(SSR1 & SCI_TEND));   /* wait for end of transfer */
    SCR1 = 0;
    serial_mode = SER_DISABLED;

    if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */
        ret = -13;

    write_transfer(dummy, 1);

    return ret;
}

/* Send one sector with polled i/o. Use for single sector transfers only. */
static int send_single_sector(const unsigned char *buf, int timeout)
{
    int ret = 0;
    unsigned char start_token = DT_START_BLOCK;

    write_transfer(&start_token, 1);
    write_transfer(buf, SECTOR_SIZE);
    write_transfer(dummy, 2);     /* crc - dontcare */

    if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */
        ret = -14;

    write_transfer(dummy, 1);

    return ret;
}

int ata_read_sectors(
#ifdef HAVE_MULTIVOLUME
    int drive,
#endif
    unsigned long start,
    int incount,
    void* inbuf)
{
    int ret = 0;
    int i;
    unsigned long addr;
    unsigned char response;
    void *inbuf_prev = NULL;
    tCardInfo *card;
#ifdef HAVE_MULTIVOLUME
    current_card = drive;
#endif
    card = &card_info[current_card];
    addr = start * SECTOR_SIZE;

    mutex_lock(&mmc_mutex);
    ret = select_card(current_card);

    if (ret == 0)
    {
        if (incount == 1)
        {   
            ret = send_cmd(CMD_READ_SINGLE_BLOCK, addr, &response);
            if (ret == 0)
            {
                ret = receive_sector(inbuf, inbuf_prev, card->read_timeout);
                inbuf_prev = inbuf;
                last_disk_activity = current_tick;
            }
        }
        else
        {
            ret = send_cmd(CMD_READ_MULTIPLE_BLOCK, addr, &response);
            for (i = 0; (i < incount) && (ret == 0); i++)
            {
                ret = receive_sector(inbuf, inbuf_prev, card->read_timeout);
                inbuf_prev = inbuf;
                inbuf += SECTOR_SIZE;
                last_disk_activity = current_tick;
            }
            if (ret == 0)
                ret = send_cmd(CMD_STOP_TRANSMISSION, 0, &response);
        }
        if (ret == 0)
            bitswap(inbuf_prev, SECTOR_SIZE);
    }

    deselect_card();
    mutex_unlock(&mmc_mutex);

    /* only flush if reading went ok */
    if ( (ret == 0) && delayed_write )
        ata_flush();

    return ret;
}

int ata_write_sectors(
#ifdef HAVE_MULTIVOLUME
                      int drive,
#endif
                      unsigned long start,
                      int count,
                      const void* buf)
{
    int ret = 0;
    int i;
    unsigned long addr;
    unsigned char response;
    tCardInfo *card;
#ifdef HAVE_MULTIVOLUME
    current_card = drive;
#endif
    card = &card_info[current_card];

    if (start == 0)
        panicf("Writing on sector 0\n");

    addr = start * SECTOR_SIZE;
    
    mutex_lock(&mmc_mutex);
    ret = select_card(current_card);

    if (ret == 0)
    {
        if (count == 1)
        {
            ret = send_cmd(CMD_WRITE_BLOCK, addr, &response);
            if (ret == 0)
                ret = send_single_sector(buf, card->write_timeout);
            last_disk_activity = current_tick;
        }
        else
        {
            swapcopy_sector(buf); /* prepare first sector */
            ret = send_cmd(CMD_WRITE_MULTIPLE_BLOCK, addr, &response);
            for (i = 1; (i < count) && (ret == 0); i++)
            {
                buf += SECTOR_SIZE;
                ret = send_sector(buf, card->write_timeout);
                last_disk_activity = current_tick;
            }
            if (ret == 0)
            {
                ret = send_sector(NULL, card->write_timeout);
                if (ret == 0)
                {
                    response = DT_STOP_TRAN;
                    write_transfer(&response, 1);
                    poll_busy(card->write_timeout);
                }
                last_disk_activity = current_tick;
            }
        }
    }

    deselect_card();
    mutex_unlock(&mmc_mutex);

    /* only flush if writing went ok */
    if ( (ret == 0) && delayed_write )
        ata_flush();

    return ret;
}

/* While there is no spinup, the delayed write is still here to avoid
   wearing the flash unnecessarily */
extern void ata_delayed_write(unsigned long sector, const void* buf)
{
    memcpy(delayed_sector, buf, SECTOR_SIZE);
    delayed_sector_num = sector;
    delayed_write = true;
}

/* write the delayed sector to volume 0 */
extern void ata_flush(void)
{
    if ( delayed_write ) {
        DEBUGF("ata_flush()\n");
        delayed_write = false;
        ata_write_sectors(IF_MV2(0,) delayed_sector_num, 1, delayed_sector);
    }
}

void ata_spindown(int seconds)
{
    (void)seconds;
}

bool ata_disk_is_active(void)
{
    /* this is correct unless early return from write gets implemented */
    return mmc_mutex.locked;
}

int ata_standby(int time)
{
    (void)time;

    return 0;
}

int ata_sleep(void)
{
    return 0;
}

void ata_spin(void)
{
}

bool mmc_detect(void)
{
    return adc_read(ADC_MMC_SWITCH) < 0x200 ? true : false;
}

static void mmc_tick(void)
{
    bool current_status;

    current_status = mmc_detect();
    
    /* Only report when the status has changed */
    if (current_status != last_mmc_status)
    {
        last_mmc_status = current_status;
        countdown = 30;
    }
    else
    {
        /* Count down until it gets negative */
        if (countdown >= 0)
            countdown--;

        if (countdown == 0)
        {
            if (current_status)
            {
                queue_broadcast(SYS_MMC_INSERTED, NULL);
            }
            else
            {
                queue_broadcast(SYS_MMC_EXTRACTED, NULL);
                card_info[1].initialized = false;
            }
        }
    }
}

int ata_soft_reset(void)
{
    return 0;
}

void ata_enable(bool on)
{
    PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIOs, if not modified below */
    PACR2 &= ~0x4000; /* use PA7 (bridge reset) as GPIO */
    if (on)
    {
        PBCR1 |= 0x08A0;    /* as SCK1, TxD1, RxD1 */
        IPRE &= 0x0FFF;     /* disable SCI1 interrupts for the CPU */
    }
    and_b(~0x80, &PADRL); /* assert reset */
    sleep(HZ/20);
    or_b(0x80, &PADRL);   /* de-assert reset */
    sleep(HZ/20);
    card_info[0].initialized = false;
    card_info[1].initialized = false;
}

int ata_init(void)
{
    int rc = 0;

    mutex_init(&mmc_mutex);

    led(false);

    /* Port setup */
    PACR1 &= ~0x0F00; /* GPIO function for PA12, /IRQ1 for PA13 */
    PACR1 |= 0x0400;
    PADR |= 0x0680;   /* set all the selects + reset high (=inactive) */
    PAIOR |= 0x1680;  /* make outputs for them and the PA12 clock gate */

    PBDR |= 0x2C00;   /* SCK1, TxD1 and RxD1 high when GPIO  CHECKME: mask */
    PBIOR |= 0x2000;  /* SCK1 output */
    PBIOR &= ~0x0C00; /* TxD1, RxD1 input */

    last_mmc_status = mmc_detect();
    if (last_mmc_status)
    {   /* MMC inserted */
        current_card = 1;
    }
    else
    {   /* no MMC, use internal memory */
        current_card = 0;
    }

    ata_enable(true);
    
    if ( !initialized ) 
    {
        tick_add_task(mmc_tick);
        initialized = true;
    }

    return rc;
}