1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "axp-2101.h"
#include "power.h"
#include "system.h"
#include "i2c-async.h"
#include <string.h>
/* Headers for the debug menu */
#ifndef BOOTLOADER
# include "action.h"
# include "list.h"
# include <stdio.h>
#endif
struct axp_adc_info {
uint8_t reg;
uint8_t en_reg;
uint8_t en_bit;
int8_t num;
int8_t den;
};
struct axp_supply_info {
uint8_t volt_reg;
uint8_t volt_reg_mask;
uint8_t en_reg;
uint8_t en_bit;
int min_mV;
int max_mV; // if multiple steps, set to max of step 1
int step_mV;
int step2_min_mV;
int step2_mV;
int step2_max_mV;
int step3_min_mV;
int step3_mV;
int step3_max_mV;
};
static const struct axp_adc_info axp_adc_info[AXP2101_NUM_ADC_CHANNELS] = {
// TODO: Datasheet ADC conversion table doesn't seem to make any sense...
// 0x000 0x001 0x002 ... 0xFFF
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VBAT_VOLTAGE] = {AXP2101_REG_ADC_VBAT_H, AXP2101_REG_ADCCHNENABLE, 1 << 0, 1, 1},
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VBUS_VOLTAGE] = {AXP2101_REG_ADC_VBUS_H, AXP2101_REG_ADCCHNENABLE, 1 << 2, 1, 1},
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VSYS_VOLTAGE] = {AXP2101_REG_ADC_VSYS_H, AXP2101_REG_ADCCHNENABLE, 1 << 3, 1, 1},
// 0mV 0.5mV 1mV ... 4.096V
[AXP2101_ADC_TS_VOLTAGE] = {AXP2101_REG_ADC_TS_H, AXP2101_REG_ADCCHNENABLE, 1 << 1, 1, 1},
// 0mV 0.1mV 2mV ... 0.8192V
[AXP2101_ADC_DIE_TEMPERATURE] = {AXP2101_REG_ADC_TDIE_H, AXP2101_REG_ADCCHNENABLE, 1 << 4, 1, 1},
};
static const struct axp_supply_info axp_supply_info[AXP2101_NUM_SUPPLIES] = {
[AXP2101_SUPPLY_DCDC1] = {
.volt_reg = 0x82,
.volt_reg_mask = 0x1f, // N.B. max value 0b10011, values higher reserved
.en_reg = 0x80,
.en_bit = 0,
.min_mV = 1500,
.max_mV = 3400,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DCDC2] = {
.volt_reg = 0x83,
.volt_reg_mask = 0x7f, // N.B. max value 0b1010111, values higher reserved
.en_reg = 0x80,
.en_bit = 1,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1540,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
// N.B. 10mV/step from 0.5 - 1.2v (71 steps),
// 20mV/step from 1.22 - 1.54v (17 steps)
},
[AXP2101_SUPPLY_DCDC3] = {
.volt_reg = 0x84,
.volt_reg_mask = 0x7f, // N.B. max value 0b1101011, values higher reserved
.en_reg = 0x80,
.en_bit = 2,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1540,
.step3_min_mV = 1600,
.step3_mV = 100,
.step3_max_mV = 3400,
// N.B. 10mV/step from 0.5 - 1.2V (71 steps)
// 20mV/step from 1.22 - 1.54V (17 steps)
// 100mV/step from 1.6 - 3.4V (19 steps)
},
[AXP2101_SUPPLY_DCDC4] = {
.volt_reg = 0x85,
.volt_reg_mask = 0x7f, // N.B. max value 0b1100110, values higher reserved
.en_reg = 0x80,
.en_bit = 3,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1840,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
// N.B. 10mV/step from 0.5 - 1.2V (71 steps)
// 20mV/step from 1.22 - 1.84V (32 steps)
},
[AXP2101_SUPPLY_DCDC5] = {
.volt_reg = 0x86,
.volt_reg_mask = 0x3f, // N.B. max value 0b10111, values higher reserved
.en_reg = 0x80,
.en_bit = 4,
.min_mV = 1400,
.max_mV = 3700,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO1] = {
.volt_reg = 0x92,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 0,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO2] = {
.volt_reg = 0x93,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 1,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO3] = {
.volt_reg = 0x94,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 2,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO4] = {
.volt_reg = 0x95,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 3,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_BLDO1] = {
.volt_reg = 0x96,
.volt_reg_mask = 0x3f, // N.B. max value 0b11110, values higher reserved
.en_reg = 0x90,
.en_bit = 4,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_BLDO2] = {
.volt_reg = 0x97,
.volt_reg_mask = 0x3f, // N.B. max value 0b11110, values higher reserved
.en_reg = 0x90,
.en_bit = 5,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DLDO1] = {
.volt_reg = 0x99,
.volt_reg_mask = 0x3f, // N.B. max value 0b11100, values higher reserved
.en_reg = 0x90,
.en_bit = 7,
.min_mV = 500,
.max_mV = 3400,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DLDO2] = {
.volt_reg = 0x9a,
.volt_reg_mask = 0x3f, // N.B. max value 0b11100, values higher reserved
.en_reg = 0x91,
.en_bit = 0,
.min_mV = 500,
.max_mV = 1400,
.step_mV = 560,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_VCPUS] = {
.volt_reg = 0x98,
.volt_reg_mask = 0x3f, // N.B. max value 0b10011, values higher reserved
.en_reg = 0x90,
.en_bit = 6,
.min_mV = 500,
.max_mV = 1400,
.step_mV = 50,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
// No voltage reg given - are these fixed?
// [AXP_SUPPLY_RTCLDO1] = {
// },
// [AXP_SUPPLY_RTCLDO2] = {
// },
};
void axp2101_init(void)
{
}
void axp2101_supply_set_voltage(int supply, int voltage)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0 || info->volt_reg_mask == 0)
return;
if(voltage > 0 && info->step_mV != 0) {
if(voltage < info->min_mV)
return;
int regval;
// there's probably a more elegant way to do this...
if(voltage > info->max_mV) {
if(info->step2_max_mV == 0) {
return;
} else {
if(voltage > info->step2_max_mV) {
if(info->step3_max_mV == 0 || voltage > info->step3_max_mV) {
return;
} else {
// step3 range
regval = ((info->max_mV - info->min_mV) / info->step_mV)\
+ ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV)\
+ ((voltage - info->step3_min_mV) / info->step3_mV) + 2;
}
} else {
// step2 range
regval = ((info->max_mV - info->min_mV) / info->step_mV)\
+ ((voltage - info->step2_min_mV) / info->step2_mV) + 1;
}
}
} else {
// step1 range
regval = (voltage - info->min_mV) / info->step_mV;
}
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg,
info->volt_reg_mask, regval, NULL);
}
if(info->en_bit != 0xff) {
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
info->en_reg, info->en_bit,
voltage > 0 ? 1 : 0, NULL);
}
}
int axp2101_supply_get_voltage(int supply)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0)
return AXP2101_SUPPLY_NOT_PRESENT;
if(info->en_reg != 0) {
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->en_reg);
if(r < 0)
return AXP2101_SUPPLY_DISABLED;
if(r & (1 << info->en_bit) == 0)
return AXP2101_SUPPLY_DISABLED;
}
/* Hack, avoid undefined shift below. Can be useful too... */
if(info->volt_reg_mask == 0)
return info->min_mV;
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg);
if(r < 0)
return 0;
int val;
r = r & info->volt_reg_mask;
// there's probably a more elegant way to do this...
if(r > ((info->max_mV - info->min_mV) / info->step_mV)) {
r = r - ((info->max_mV - info->min_mV) / info->step_mV);
if(r > ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV + 1)) {
r = r - ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV);
/* step 3 */
val = info->step3_min_mV + ((r-2) * info->step3_mV);
} else {
/* step 2 */
val = info->step2_min_mV + ((r-1) * info->step2_mV);
}
} else {
/* step 1 */
val = info->min_mV + (r * info->step_mV);
}
return val;
}
/* TODO: can we trust the battery current direction? */
int axp2101_battery_status(void)
{
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_PMU_STATUS2);
if((r >> 5) & 0x03 == 0) {
return AXP2101_BATT_FULL;
} else if((r >> 5) & 0x03 == 01) {
return AXP2101_BATT_CHARGING;
} else {
return AXP2101_BATT_DISCHARGING;
}
}
int axp2101_input_status(void)
{
#ifdef HAVE_BATTERY_SWITCH
int input_status = 0;
#else
int input_status = AXP2101_INPUT_BATTERY;
#endif
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_PMU_STATUS1);
if(r & 0x20)
input_status |= AXP2101_INPUT_USB;
#ifdef HAVE_BATTERY_SWITCH
if(r & 0x80)
input_status |= AXP2101_INPUT_BATTERY;
#endif
return input_status;
}
int axp2101_adc_read(int adc)
{
int value = axp2101_adc_read_raw(adc);
if(value == INT_MIN)
return INT_MIN;
return axp2101_adc_conv_raw(adc, value);
}
int axp2101_adc_read_raw(int adc)
{
/* Read the ADC */
uint8_t buf[2];
uint8_t reg = axp_adc_info[adc].reg;
int rc = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR, reg, 2, &buf[0]);
if(rc != I2C_STATUS_OK)
return INT_MIN;
/* Parse the value */
return ((buf[0] & 0x3f) << 8) | (buf[1] & 0xff);
}
int axp2101_adc_conv_raw(int adc, int value)
{
return axp_adc_info[adc].num * value / axp_adc_info[adc].den;
}
void axp2101_adc_set_enabled(int adc_bits)
{
uint8_t xfer[1];
xfer[0] = 0;
/* Compute the new register values */
const struct axp_adc_info* info = axp_adc_info;
for(int i = 0; i < AXP2101_NUM_ADC_CHANNELS; ++i) {
if(!(adc_bits & (1 << i)))
continue;
xfer[0] |= info[i].en_bit;
}
/* Update the configuration */
i2c_reg_write(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_ADCCHNENABLE, 1, &xfer[0]);
}
// TODO: See if we can figure out "optimum" battery chemistry-type settings
// like constant-current charging, charge curves... that stuff is all configurable
// as far as I can tell! Probably important to at least figure out if the defaults
// are clearly wrong or not!
// TODO: what are DATA_BUFFER 0-3 for????
// there are many current settings:
// Reg 16: Input current limit control
// Reg 61: Precharge current limit
// Reg 62: Constant current charge current limit
// Reg 63: Charging termination current limit
// there are also voltage settings for charging:
// Reg 14: Linear Charger Vsys voltage dpm
// Reg 15: Input Voltage limit control
// Reg 64: CV charger charge voltage limit
// There are also some timer stuff:
// Reg 67: Charger timeout setting and control
// constant current charge current limits
static const int chargecurrent_tbl[] = {
0, 25, 50, 75, 100, 125, 150, 175, 200,
300, 400, 500, 600, 700, 800, 900, 1000,
};
// constant current charge current limits
void axp2101_set_charge_current(int current_mA)
{
/* find greatest charging current not exceeding requested current */
unsigned int index = 0;
while(index < ARRAYLEN(chargecurrent_tbl)-1 &&
chargecurrent_tbl[index+1] <= current_mA)
++index;
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_ICC_SETTING, 0x0f, index, NULL);
}
int axp2101_get_charge_current(void)
{
int ret = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_ICC_SETTING);
if(ret < 0)
ret = 0;
return chargecurrent_tbl[ret & 0x0f];
}
void axp2101_power_off(void)
{
/* Set the shutdown bit */
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_PMUCOMMCONFIG, 0, 1, NULL);
}
#ifndef BOOTLOADER
enum {
AXP_DEBUG_BATTERY_STATUS,
AXP_DEBUG_INPUT_STATUS,
AXP_DEBUG_CHARGE_CURRENT,
AXP_DEBUG_FIRST_ADC,
AXP_DEBUG_FIRST_SUPPLY = AXP_DEBUG_FIRST_ADC + AXP2101_NUM_ADC_CHANNELS,
AXP_DEBUG_NUM_ENTRIES = AXP_DEBUG_FIRST_SUPPLY + AXP2101_NUM_SUPPLIES,
};
static int axp2101_debug_menu_cb(int action, struct gui_synclist* lists)
{
(void)lists;
if(action == ACTION_NONE)
action = ACTION_REDRAW;
return action;
}
static const char* axp2101_debug_menu_get_name(int item, void* data,
char* buf, size_t buflen)
{
(void)data;
static const char* const adc_names[] = {
"V_bat", "V_bus", "V_sys", "V_ts", "V_die",
};
static const char* const adc_units[] = {
"mV", "mV", "mV", "mV", "C*100",
};
static const char* const supply_names[] = {
"DCDC1", "DCDC2", "DCDC3", "DCDC4", "DCDC5",
"ALDO1", "ALDO2", "ALDO3", "ALDO4", "BLDO1", "BLDO2", "DLDO1", "DLDO2",
"VCPUS",
};
int adc = item - AXP_DEBUG_FIRST_ADC;
if(item >= AXP_DEBUG_FIRST_ADC && adc < AXP2101_NUM_ADC_CHANNELS) {
int raw_value = axp2101_adc_read_raw(adc);
if(raw_value == INT_MIN) {
snprintf(buf, buflen, "%s: [Disabled]", adc_names[adc]);
return buf;
}
int value = axp2101_adc_conv_raw(adc, raw_value);
snprintf(buf, buflen, "%s: %d %s", adc_names[adc],
value, adc_units[adc]);
return buf;
}
int supply = item - AXP_DEBUG_FIRST_SUPPLY;
if(item >= AXP_DEBUG_FIRST_SUPPLY && supply < AXP2101_NUM_SUPPLIES) {
int voltage = axp2101_supply_get_voltage(supply);
if(voltage == AXP2101_SUPPLY_NOT_PRESENT)
snprintf(buf, buflen, "%s: [Not Present]", supply_names[supply]);
else if(voltage == AXP2101_SUPPLY_DISABLED)
snprintf(buf, buflen, "%s: [Disabled]", supply_names[supply]);
else
snprintf(buf, buflen, "%s: %d mV", supply_names[supply], voltage);
return buf;
}
switch(item) {
case AXP_DEBUG_BATTERY_STATUS: {
switch(axp2101_battery_status()) {
case AXP2101_BATT_FULL:
return "Battery: Full";
case AXP2101_BATT_CHARGING:
return "Battery: Charging";
case AXP2101_BATT_DISCHARGING:
return "Battery: Discharging";
default:
return "Battery: Unknown";
}
} break;
case AXP_DEBUG_INPUT_STATUS: {
int s = axp2101_input_status();
const char* ac = (s & AXP2101_INPUT_AC) ? " AC" : "";
const char* usb = (s & AXP2101_INPUT_USB) ? " USB" : "";
const char* batt = (s & AXP2101_INPUT_BATTERY) ? " Battery" : "";
snprintf(buf, buflen, "Inputs:%s%s%s", ac, usb, batt);
return buf;
} break;
case AXP_DEBUG_CHARGE_CURRENT: {
int current = axp2101_get_charge_current();
snprintf(buf, buflen, "Max charge current: %d mA", current);
return buf;
} break;
default:
return "---";
}
}
bool axp2101_debug_menu(void)
{
struct simplelist_info info;
simplelist_info_init(&info, "AXP debug", AXP_DEBUG_NUM_ENTRIES, NULL);
info.action_callback = axp2101_debug_menu_cb;
info.get_name = axp2101_debug_menu_get_name;
return simplelist_show_list(&info);
}
#endif /* !BOOTLOADER */
/* This is basically the only valid implementation, so define it here */
unsigned int axp2101_power_input_status(void)
{
unsigned int state = 0;
int input_status = axp2101_input_status();
if(input_status & AXP2101_INPUT_AC)
state |= POWER_INPUT_MAIN_CHARGER;
if(input_status & AXP2101_INPUT_USB)
state |= POWER_INPUT_USB_CHARGER;
#ifdef HAVE_BATTERY_SWITCH
if(input_status & AXP2101_INPUT_BATTERY)
state |= POWER_INPUT_BATTERY;
#endif
return state;
}
|