summaryrefslogtreecommitdiffstats
path: root/firmware/target/arm/as3525/sansa-e200v2/lcd-e200v2.c
blob: e25494dddd2d25b193ecdeec42bf93edefa9cd5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2004 by Linus Nielsen Feltzing
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include "config.h"

#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#include "clock-target.h"

static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
/* we need to write a red pixel for correct button reads
 * (see lcd_button_support()), but that must not happen while the lcd is
 * updating so block lcd_button_support the during updates */
static volatile bool lcd_busy = false;

/* register defines */
#define R_START_OSC             0x00
#define R_DRV_OUTPUT_CONTROL    0x01
#define R_DRV_WAVEFORM_CONTROL  0x02
#define R_ENTRY_MODE            0x03
#define R_COMPARE_REG1          0x04
#define R_COMPARE_REG2          0x05

#define R_DISP_CONTROL1     0x07
#define R_DISP_CONTROL2     0x08
#define R_DISP_CONTROL3     0x09

#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c

#define R_POWER_CONTROL1    0x10
#define R_POWER_CONTROL2    0x11
#define R_POWER_CONTROL3    0x12
#define R_POWER_CONTROL4    0x13

#define R_RAM_ADDR_SET  0x21
#define R_WRITE_DATA_2_GRAM 0x22

#define R_GAMMA_FINE_ADJ_POS1   0x30
#define R_GAMMA_FINE_ADJ_POS2   0x31
#define R_GAMMA_FINE_ADJ_POS3   0x32
#define R_GAMMA_GRAD_ADJ_POS    0x33

#define R_GAMMA_FINE_ADJ_NEG1   0x34
#define R_GAMMA_FINE_ADJ_NEG2   0x35
#define R_GAMMA_FINE_ADJ_NEG3   0x36
#define R_GAMMA_GRAD_ADJ_NEG    0x37

#define R_GAMMA_AMP_ADJ_RES_POS     0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39

#define R_GATE_SCAN_POS         0x40
#define R_VERT_SCROLL_CONTROL   0x41
#define R_1ST_SCR_DRV_POS       0x42
#define R_2ND_SCR_DRV_POS       0x43
#define R_HORIZ_RAM_ADDR_POS    0x44
#define R_VERT_RAM_ADDR_POS     0x45

/* Flip Flag */
#define R_ENTRY_MODE_HORZ_NORMAL 0x7030
#define R_ENTRY_MODE_HORZ_FLIPPED 0x7000
static unsigned short r_entry_mode = R_ENTRY_MODE_HORZ_NORMAL;
#define R_ENTRY_MODE_VERT 0x7038
#define R_ENTRY_MODE_SOLID_VERT  0x1038
#define R_ENTRY_MODE_VIDEO_NORMAL 0x7020
#define R_ENTRY_MODE_VIDEO_FLIPPED 0x7010


/* Reverse Flag */
#define R_DISP_CONTROL_NORMAL 0x0004
#define R_DISP_CONTROL_REV    0x0000
static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL;

/* TODO: Implement this function */
static void lcd_delay(int x)
{
    /* This is just arbitrary - the OF does something more complex */
    x *= 1024;
    while (x--);
}

/* DBOP initialisation, do what OF does */
static void ams3525_dbop_init(void)
{
    CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;

    DBOP_TIMPOL_01 = 0xe167e167;
    DBOP_TIMPOL_23 = 0xe167006e;
    
    /* short count, 16bit write, read-timing =8 */
    DBOP_CTRL = (1<<18)|(1<<12)|(8<<0);

    GPIOB_AFSEL = 0xfc;
    GPIOC_AFSEL = 0xff;

    DBOP_TIMPOL_23 = 0x6000e;
    
    /* short count,write enable, 16bit write, read-timing =8 */
    DBOP_CTRL = (1<<18)|(1<<16)|(1<<12)|(8<<0);
    DBOP_TIMPOL_01 = 0x6e167;
    DBOP_TIMPOL_23 = 0xa167e06f;

    /* TODO: The OF calls some other functions here, but maybe not important */
}

#define lcd_write_single_data16(value) do {\
        DBOP_CTRL &= ~(1<<14|1<<13); \
        DBOP_DOUT16 = (fb_data)(value); \
    } while(0)

static void lcd_write_cmd(int cmd)
{
    /* Write register */
    DBOP_TIMPOL_23 = 0xa167006e;
    lcd_write_single_data16(cmd);

    /* Wait for fifo to empty */
    while ((DBOP_STAT & (1<<10)) == 0);

    /* Fuze OF has this loop and it seems to help us now also */
    int delay=8;
    while(delay--);

    DBOP_TIMPOL_23 = 0xa167e06f;
}

void lcd_write_data(const fb_data* p_bytes, int count)
{
    const long *data;
    if ((int)p_bytes & 0x3)
    {   /* need to do a single 16bit write beforehand if the address is */
        /* not word aligned*/
        lcd_write_single_data16(*p_bytes);
        count--;p_bytes++;
    }
    /* from here, 32bit transfers are save */
    /* set it to transfer 4*(outputwidth) units at a time, */
    /* if bit 12 is set it only does 2 halfwords though */
    DBOP_CTRL |= (1<<13|1<<14);
    data = (long*)p_bytes;
    while (count > 1)
    {
        DBOP_DOUT32 = *data++;
        count -= 2;

        /* TODO: We should normally fill the fifo until it's full
 	  	* instead of waiting after each word,
                    * but that causes blue lines on the display */                    
        while ((DBOP_STAT & (1<<10)) == 0);
    }
    
    /* due to the 32bit alignment requirement, we possibly need to do a
        * 16bit transfer at the end also */
    if (count > 0)
        lcd_write_single_data16(*(fb_data*)data);
}

static void lcd_write_reg(int reg, int value)
{
    fb_data data = value;

    lcd_write_cmd(reg);
    lcd_write_single_data16(data);
}

/*** hardware configuration ***/

void lcd_set_contrast(int val)
{
    (void)val;
}

void lcd_set_invert_display(bool yesno)
{
    r_disp_control_rev = yesno ? R_DISP_CONTROL_REV :
                                 R_DISP_CONTROL_NORMAL;

    if (display_on)
    {
        lcd_write_reg(R_DISP_CONTROL1, 0x0033 | r_disp_control_rev);
    }

}

/* turn the display upside down  */
void lcd_set_flip(bool yesno)
{
    display_flipped = yesno;

    r_entry_mode = yesno ? R_ENTRY_MODE_HORZ_FLIPPED :
                           R_ENTRY_MODE_HORZ_NORMAL;
}

static void lcd_window(int xmin, int ymin, int xmax, int ymax)
{
    if (!display_flipped)
    {
        lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (xmax << 8) | xmin);
        lcd_write_reg(R_VERT_RAM_ADDR_POS,  (ymax << 8) | ymin);
        lcd_write_reg(R_RAM_ADDR_SET,       (ymin << 8) | xmin);
    }
    else
    {
        lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 
            ((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax));
        lcd_write_reg(R_VERT_RAM_ADDR_POS, 
            ((LCD_HEIGHT-1 - ymin) << 8) | (LCD_HEIGHT-1 - ymax));
        lcd_write_reg(R_RAM_ADDR_SET, 
            ((LCD_HEIGHT-1 - ymin) << 8) | (LCD_WIDTH-1 - xmin));
    }
}

static void _display_on(void)
{
    /* Initialisation the display the same way as the original firmware */

    lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */

    lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */

    /* B/C = 1: n-line inversion form
     * EOR = 1: polarity inversion occurs by applying an EOR to odd/even
     *          frame select signal and an n-line inversion signal.
     * FLD = 01b: 1 field interlaced scan, external display iface */
    lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);

    /* Address counter updated in horizontal direction; left to right;
     * vertical increment horizontal increment.
     * data format for 8bit transfer or spi = 65k (5,6,5) */
    lcd_write_reg(R_ENTRY_MODE, r_entry_mode);

    /* Replace data on writing to GRAM */
    lcd_write_reg(R_COMPARE_REG1, 0);
    lcd_write_reg(R_COMPARE_REG2, 0);

    /* GON = 0, DTE = 0, D1-0 = 00b */
    lcd_write_reg(R_DISP_CONTROL1, 0x0000 | r_disp_control_rev);

    /* Front porch lines: 2; Back porch lines: 2; */
    lcd_write_reg(R_DISP_CONTROL2, 0x0203);

    /* Scan cycle = 0 frames */
    lcd_write_reg(R_DISP_CONTROL3, 0x0000);

    /* 16 clocks */
    lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000);

    /* 18-bit RGB interface (one transfer/pixel)
     * internal clock operation;
     * System interface/VSYNC interface */
    lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000);


    /* zero everything*/
    lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */

    lcd_delay(10);

    /* initialise power supply */

    /* DC12-10 = 000b: Step-up1 = clock/8,
     * DC02-00 = 000b: Step-up2 = clock/16,
     * VC2-0   = 010b: VciOUT = 0.87 * VciLVL */
    lcd_write_reg(R_POWER_CONTROL2, 0x0002);

    /* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
    lcd_write_reg(R_POWER_CONTROL3, 0x0008);

    lcd_delay(40);

    lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */

    /* This register is unknown */
    lcd_write_reg(0x56, 0x80f);


    lcd_write_reg(R_POWER_CONTROL1, 0x4140);

    lcd_delay(10);

    lcd_write_reg(R_POWER_CONTROL2, 0x0000);
    lcd_write_reg(R_POWER_CONTROL3, 0x0013);

    lcd_delay(20);

    lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);

    lcd_delay(20);

    lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);

    lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002);
    lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
    lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182);
    lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203);
    lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706);
    lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006);
    lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706);
    lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000);
    lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f);
    lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08);


    lcd_write_reg(R_GATE_SCAN_POS, 0);
    lcd_write_reg(R_VERT_SCROLL_CONTROL, 0);

    lcd_window(0, 0, LCD_WIDTH-1, LCD_HEIGHT-1);
    lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
    lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);

    lcd_write_reg(R_DISP_CONTROL1, 0x0033 | r_disp_control_rev);

    display_on=true;  /* must be done before calling lcd_update() */
    lcd_update();
}

/* LCD init */
void lcd_init_device(void)
{
    ams3525_dbop_init();

    /* Init GPIOs the same as the OF */

    GPIOA_DIR |= (1<<5);
    GPIOA_PIN(5) = 0;

    GPIOA_PIN(4) = 0;  /*c80b0040 := 0;*/

    lcd_delay(1);

    GPIOA_PIN(5) = (1<<5);

    lcd_delay(1);

    _display_on();
}

#if defined(HAVE_LCD_ENABLE)
void lcd_enable(bool on)
{
    if(display_on!=on)
    {
        if(on)
        {
            _display_on();
            lcd_activation_call_hook();
        }
        else
        {
            display_on=false;
            lcd_write_reg(R_POWER_CONTROL1, 0x0001);
        }
    }
}
#endif

#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
bool lcd_active(void)
{
    return display_on;
}

#endif

/*** update functions ***/

static unsigned lcd_yuv_options = 0;

/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
                                   int width,
                                   int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
                                   int width,
                                   int stride,
                                   int x_screen, /* To align dither pattern */
                                   int y_screen);

void lcd_yuv_set_options(unsigned options)
{
    lcd_yuv_options = options;
}

static void lcd_window_blit(int xmin, int ymin, int xmax, int ymax)
{
    if (!display_flipped)
    {
        lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 
            ((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax));
        lcd_write_reg(R_VERT_RAM_ADDR_POS,  (ymax << 8) | ymin);
        lcd_write_reg(R_RAM_ADDR_SET, 
            (ymin << 8) | (LCD_WIDTH-1 - xmin));
    }
    else
    {
        lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (xmax << 8) | xmin);
        lcd_write_reg(R_VERT_RAM_ADDR_POS,  (ymax << 8) | ymin);
        lcd_write_reg(R_RAM_ADDR_SET,       (ymax << 8) | xmin);
    }
}

/* Performance function to blit a YUV bitmap directly to the LCD
 * src_x, src_y, width and height should be even
 * x, y, width and height have to be within LCD bounds
 */
void lcd_blit_yuv(unsigned char * const src[3],
                  int src_x, int src_y, int stride,
                  int x, int y, int width, int height)
{
    unsigned char const * yuv_src[3];
    off_t z;

    lcd_busy = true;

    /* Sorry, but width and height must be >= 2 or else */
    width &= ~1;
    height >>= 1;

    z = stride*src_y;
    yuv_src[0] = src[0] + z + src_x;
    yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
    yuv_src[2] = src[2] + (yuv_src[1] - src[1]);

    if (!display_flipped)
    {
        lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_NORMAL);
    }
    else
    {
        lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_FLIPPED);
    }

    if (lcd_yuv_options & LCD_YUV_DITHER)
    {
        do
        {
            lcd_window_blit(y, x, y+1, x+width-1);

            /* Start write to GRAM */
            lcd_write_cmd(R_WRITE_DATA_2_GRAM);

            lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y);
            yuv_src[0] += stride << 1; /* Skip down two luma lines */
            yuv_src[1] += stride >> 1; /* Skip down one chroma line */
            yuv_src[2] += stride >> 1;
            y+=2;
        }
        while (--height > 0);
    }
    else
    {
        do
        {
            lcd_window_blit(y, x, y+1, x+width-1);

            /* Start write to GRAM */
            lcd_write_cmd(R_WRITE_DATA_2_GRAM);

            lcd_write_yuv420_lines(yuv_src, width, stride);
            yuv_src[0] += stride << 1; /* Skip down two luma lines */
            yuv_src[1] += stride >> 1; /* Skip down one chroma line */
            yuv_src[2] += stride >> 1;
            y+=2;
        }
        while (--height > 0);
    }

    lcd_busy = false;
}

/* Update the display.
   This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
    if (!display_on)
        return;

    lcd_write_reg(R_ENTRY_MODE, r_entry_mode);

    lcd_busy = true;
    /* Set start position and window */
    lcd_window(0, 0, LCD_WIDTH-1, LCD_HEIGHT-1);

    lcd_write_cmd(R_WRITE_DATA_2_GRAM);

    lcd_write_data((fb_data*)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);

    lcd_busy = false;
} /* lcd_update */


/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
    const fb_data *ptr;
    int ymax, xmax;


    if (!display_on)
        return;

    xmax = x + width;
    if (xmax >= LCD_WIDTH)
        xmax = LCD_WIDTH - 1; /* Clip right */
    if (x < 0)
        x = 0;                /* Clip left */
    if (x >= xmax)
        return; /* nothing left to do */

    width = xmax - x + 1;     /* Fix width */

    ymax = y + height;
    if (ymax >= LCD_HEIGHT)
        ymax = LCD_HEIGHT - 1; /* Clip bottom */
    if (y < 0)
        y = 0; /* Clip top */
    if (y >= ymax)
        return; /* nothing left to do */

    lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
    lcd_busy = true;
    lcd_window(x, y, xmax, ymax);
    lcd_write_cmd(R_WRITE_DATA_2_GRAM);

    ptr = (fb_data*)&lcd_framebuffer[y][x];

    do
    {
        lcd_write_data(ptr, width);
        ptr += LCD_WIDTH;
    }
    while (++y <= ymax);

    lcd_busy = false;
} /* lcd_update_rect */

/* writes one red pixel outside the visible area, needed for correct
 * dbop reads */
bool lcd_button_support(void)
{
    fb_data data = (0xf<<12);

    if (lcd_busy)
        return false;

    lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
    /* Set start position and window */
    lcd_window(LCD_WIDTH+1, LCD_HEIGHT+1, LCD_WIDTH+2, LCD_HEIGHT+2);

    lcd_write_cmd(R_WRITE_DATA_2_GRAM);

    lcd_write_single_data16(data);
    return true;
}