summaryrefslogtreecommitdiffstats
path: root/firmware/target/arm/s5l8700/ipodnano2g/lcd-nano2g.c
blob: 5bda9e7387d00aadd69b5b28ba1faeafc1c7d7ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2009 by Dave Chapman
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include "config.h"

#include "hwcompat.h"
#include "kernel.h"
#include "lcd.h"
#include "system.h"
#include "cpu.h"
#include "pmu-target.h"
#include "power.h"


/* The Nano 2G has two different LCD types.  What we call "type 0"
   appears to be similar to the ILI9320 and "type 1" is similar to the
   LDS176.
*/

/* LCD type 0 register defines */

#define R_ENTRY_MODE              0x03
#define R_DISPLAY_CONTROL_1       0x07
#define R_POWER_CONTROL_1         0x10
#define R_POWER_CONTROL_2         0x12
#define R_POWER_CONTROL_3         0x13
#define R_HORIZ_GRAM_ADDR_SET     0x20
#define R_VERT_GRAM_ADDR_SET      0x21
#define R_WRITE_DATA_TO_GRAM      0x22
#define R_HORIZ_ADDR_START_POS    0x50
#define R_HORIZ_ADDR_END_POS      0x51
#define R_VERT_ADDR_START_POS     0x52
#define R_VERT_ADDR_END_POS       0x53


/* LCD type 1 register defines */

#define R_SLEEP_IN                0x10
#define R_DISPLAY_OFF             0x28
#define R_COLUMN_ADDR_SET         0x2a
#define R_ROW_ADDR_SET            0x2b
#define R_MEMORY_WRITE            0x2c

/** globals **/

int lcd_type; /* also needed in debug-s5l8700.c */
static int xoffset; /* needed for flip */
static bool lcd_ispowered;

#ifdef HAVE_LCD_SLEEP

#define SLEEP   0
#define CMD8    1
#define CMD16   2
#define DATA8   3
#define DATA16  4

unsigned short lcd_init_sequence_0[] = {
    CMD16,  0x00a4,
    DATA16, 0x0001,
    SLEEP,  0x0000,
    CMD16,  0x0001,
    DATA16, 0x0100,
    CMD16,  0x0002,
    DATA16, 0x0300,
    CMD16,  0x0003,
    DATA16, 0x1230,
    CMD16,  0x0008,
    DATA16, 0x0404,
    CMD16,  0x0008,
    DATA16, 0x0404,
    CMD16,  0x000e,
    DATA16, 0x0010,
    CMD16,  0x0070,
    DATA16, 0x1000,
    CMD16,  0x0071,
    DATA16, 0x0001,
    CMD16,  0x0030,
    DATA16, 0x0002,
    CMD16,  0x0031,
    DATA16, 0x0400,
    CMD16,  0x0032,
    DATA16, 0x0007,
    CMD16,  0x0033,
    DATA16, 0x0500,
    CMD16,  0x0034,
    DATA16, 0x0007,
    CMD16,  0x0035,
    DATA16, 0x0703,
    CMD16,  0x0036,
    DATA16, 0x0507,
    CMD16,  0x0037,
    DATA16, 0x0005,
    CMD16,  0x0038,
    DATA16, 0x0407,
    CMD16,  0x0039,
    DATA16, 0x000e,
    CMD16,  0x0040,
    DATA16, 0x0202,
    CMD16,  0x0041,
    DATA16, 0x0003,
    CMD16,  0x0042,
    DATA16, 0x0000,
    CMD16,  0x0043,
    DATA16, 0x0200,
    CMD16,  0x0044,
    DATA16, 0x0707,
    CMD16,  0x0045,
    DATA16, 0x0407,
    CMD16,  0x0046,
    DATA16, 0x0505,
    CMD16,  0x0047,
    DATA16, 0x0002,
    CMD16,  0x0048,
    DATA16, 0x0004,
    CMD16,  0x0049,
    DATA16, 0x0004,
    CMD16,  0x0060,
    DATA16, 0x0202,
    CMD16,  0x0061,
    DATA16, 0x0003,
    CMD16,  0x0062,
    DATA16, 0x0000,
    CMD16,  0x0063,
    DATA16, 0x0200,
    CMD16,  0x0064,
    DATA16, 0x0707,
    CMD16,  0x0065,
    DATA16, 0x0407,
    CMD16,  0x0066,
    DATA16, 0x0505,
    CMD16,  0x0068,
    DATA16, 0x0004,
    CMD16,  0x0069,
    DATA16, 0x0004,
    CMD16,  0x0007,
    DATA16, 0x0001,
    CMD16,  0x0018,
    DATA16, 0x0001,
    CMD16,  0x0010,
    DATA16, 0x1690,
    CMD16,  0x0011,
    DATA16, 0x0100,
    CMD16,  0x0012,
    DATA16, 0x0117,
    CMD16,  0x0013,
    DATA16, 0x0f80,
    CMD16,  0x0012,
    DATA16, 0x0137,
    CMD16,  0x0020,
    DATA16, 0x0000,
    CMD16,  0x0021,
    DATA16, 0x0000,
    CMD16,  0x0050,
    DATA16, 0x0000,
    CMD16,  0x0051,
    DATA16, 0x00af,
    CMD16,  0x0052,
    DATA16, 0x0000,
    CMD16,  0x0053,
    DATA16, 0x0083,
    CMD16,  0x0090,
    DATA16, 0x0003,
    CMD16,  0x0091,
    DATA16, 0x0000,
    CMD16,  0x0092,
    DATA16, 0x0101,
    CMD16,  0x0098,
    DATA16, 0x0400,
    CMD16,  0x0099,
    DATA16, 0x1302,
    CMD16,  0x009a,
    DATA16, 0x0202,
    CMD16,  0x009b,
    DATA16, 0x0200,
    SLEEP,  0x0000,
    CMD16,  0x0007,
    DATA16, 0x0021,
    CMD16,  0x0012,
    DATA16, 0x0137,
    SLEEP,  0x0000,
    CMD16,  0x0007,
    DATA16, 0x0021,
    CMD16,  0x0012,
    DATA16, 0x1137,
    SLEEP,  0x0000,
    CMD16,  0x0007,
    DATA16, 0x0233,
};

unsigned short lcd_init_sequence_1[] = {
    CMD8,  0x11,
    DATA16, 0x00,
    CMD8,  0x29,
    DATA16, 0x00,
};



#endif /* HAVE_LCD_SLEEP */

static inline void s5l_lcd_write_cmd_data(int cmd, int data)
{
    while (LCD_STATUS & 0x10);
    LCD_WCMD = cmd >> 8;
    while (LCD_STATUS & 0x10);
    LCD_WCMD = cmd & 0xff;

    while (LCD_STATUS & 0x10);
    LCD_WDATA = data >> 8;
    while (LCD_STATUS & 0x10);
    LCD_WDATA = data & 0xff;
}

static inline void s5l_lcd_write_cmd(unsigned short cmd)
{
    while (LCD_STATUS & 0x10);
    LCD_WCMD = cmd;
}

static inline void s5l_lcd_write_wcmd(unsigned short cmd)
{
    while (LCD_STATUS & 0x10);
    LCD_WCMD = cmd >> 8;
    while (LCD_STATUS & 0x10);
    LCD_WCMD = cmd & 0xff;
}

static inline void s5l_lcd_write_data(unsigned short data)
{
    while (LCD_STATUS & 0x10);
    LCD_WDATA = data & 0xff;
}

static inline void s5l_lcd_write_wdata(unsigned short data)
{
    while (LCD_STATUS & 0x10);
    LCD_WDATA = data >> 8;
    while (LCD_STATUS & 0x10);
    LCD_WDATA = data & 0xff;
}

/*** hardware configuration ***/

int lcd_default_contrast(void)
{
    return 0x1f;
}

void lcd_set_contrast(int val)
{
    (void)val;
}

void lcd_set_invert_display(bool yesno)
{
    (void)yesno;
}

/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
    /* TODO: flip mode isn't working.  The commands in the else part of
       this function are how the original firmware inits the LCD */

    if (yesno)
    {
        xoffset = 132 - LCD_WIDTH; /* 132 colums minus the 128 we have */
    }
    else 
    {
        xoffset = 0;
    }
}

bool lcd_active(void)
{
    return lcd_ispowered;
}

#ifdef HAVE_LCD_SLEEP

void lcd_wakeup(void)
{
    unsigned short *lcd_init_sequence;
    unsigned int lcd_init_sequence_length;

    PWRCONEXT &= ~0x80;
    PCON13 &= ~0xf;    /* Set pin 0 to input */
    PCON14 &= ~0xf0;   /* Set pin 1 to input */

    pmu_write(0x2b, 1);

    if (lcd_type == 0)
    {
        /* reset the lcd chip */

        LCD_RST_TIME = 0x7FFF;
        LCD_DRV_RST = 0;
        sleep(0);
        LCD_DRV_RST = 1;
        sleep(HZ / 100);

        lcd_init_sequence = lcd_init_sequence_0;
        lcd_init_sequence_length = (sizeof(lcd_init_sequence_0) - 1)/sizeof(unsigned short);
    }
    else
    {
        lcd_init_sequence = lcd_init_sequence_1;
        lcd_init_sequence_length = (sizeof(lcd_init_sequence_1) - 1)/sizeof(unsigned short);
    }

    for(unsigned int i=0;i<lcd_init_sequence_length;i+=2)
    {
        switch(lcd_init_sequence[i])
        {
            case CMD8:
                s5l_lcd_write_cmd(lcd_init_sequence[i+1]);
                break;
            case DATA8:
                s5l_lcd_write_data(lcd_init_sequence[i+1]);
                break;
            case CMD16:
                s5l_lcd_write_wcmd(lcd_init_sequence[i+1]);
                break;
            case DATA16:
                s5l_lcd_write_wdata(lcd_init_sequence[i+1]);
                break;
            case SLEEP:
                sleep(lcd_init_sequence[i+1]);
                break;
            default:
                break;
        }
    }
    lcd_ispowered = true;
    send_event(LCD_EVENT_ACTIVATION, NULL);
}

void lcd_awake(void)
{
    if(!lcd_active()) lcd_wakeup();
}
#endif

void lcd_shutdown(void)
{
    pmu_write(0x2b, 0);  /* Kill the backlight, instantly. */
    pmu_write(0x29, 0);

    if (lcd_type == 0)
    {
        s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x232);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_3, 0x1137); 
        s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x201);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_3, 0x137);
        s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x200);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_1, 0x680);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_2, 0x160);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_3, 0x127);
        s5l_lcd_write_cmd_data(R_POWER_CONTROL_1, 0x600);
    }
    else
    {
        s5l_lcd_write_cmd(R_DISPLAY_OFF);
        s5l_lcd_write_wdata(0);
        s5l_lcd_write_wdata(0);
        s5l_lcd_write_cmd(R_SLEEP_IN);
        s5l_lcd_write_wdata(0);
        s5l_lcd_write_wdata(0);
    }

    PWRCONEXT |= 0x80;

    lcd_ispowered = false;
}

void lcd_sleep(void)
{
    lcd_shutdown();
}

/* LCD init */
void lcd_init_device(void)
{
    /* Detect lcd type */

    PCON13 &= ~0xf;    /* Set pin 0 to input */
    PCON14 &= ~0xf0;   /* Set pin 1 to input */

    if (((PDAT13 & 1) == 0) && ((PDAT14 & 2) == 2))
        lcd_type = 0;  /* Similar to ILI9320 - aka "type 2" */
    else
        lcd_type = 1;  /* Similar to LDS176 - aka "type 7" */

    lcd_ispowered = true;
}

/*** Update functions ***/

static inline void lcd_write_pixel(fb_data pixel)
{
    LCD_WDATA = pixel >> 8;
    LCD_WDATA = pixel; /* no need to &0xff here, only lower 8 bit used */
}

/* Update the display.
   This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
    lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}

/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
    int y0, x0, y1, x1;
    fb_data* p;
    
    width = (width + 1) & ~1;       /* ensure width is even */

    x0 = x;                         /* start horiz */
    y0 = y;                         /* start vert */
    x1 = (x + width) - 1;           /* max horiz */
    y1 = (y + height) - 1;          /* max vert */

    if (lcd_type==0) {
        s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x0);
        s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS,   x1);
        s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS,  y0);
        s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS,    y1);

        s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET,  (x1 << 8) | x0);
        s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET,   (y1 << 8) | y0);

        s5l_lcd_write_cmd(0);
        s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
    } else {
        s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
        s5l_lcd_write_wdata(x0);            /* Start column */
        s5l_lcd_write_wdata(x1);            /* End column */

        s5l_lcd_write_cmd(R_ROW_ADDR_SET);
        s5l_lcd_write_wdata(y0);            /* Start row */
        s5l_lcd_write_wdata(y1);            /* End row */

        s5l_lcd_write_cmd(R_MEMORY_WRITE);
    }

    /* Copy display bitmap to hardware */
    p = &lcd_framebuffer[y0][x0];
    if (LCD_WIDTH == width)
    {
        x1 = height*LCD_WIDTH/4;
        do {
            while (LCD_STATUS & 0x08); /* wait while FIFO is half full */
            lcd_write_pixel(*(p++));
            lcd_write_pixel(*(p++));
            lcd_write_pixel(*(p++));
            lcd_write_pixel(*(p++));
        } while (--x1 > 0);
    } else {
        y1 = height;
        do {
            x1 = width/2; /* width is forced to even to allow speed up */
            do {
                while (LCD_STATUS & 0x08); /* wait while FIFO is half full */
                lcd_write_pixel(*(p++));
                lcd_write_pixel(*(p++));
            } while (--x1 > 0 );
            p += LCD_WIDTH - width;
        } while (--y1 > 0 );
    }
}

/*** update functions ***/

#define CSUB_X 2
#define CSUB_Y 2

/*   YUV- > RGB565 conversion
 *   |R|   |1.000000 -0.000001  1.402000| |Y'|
 *   |G| = |1.000000 -0.334136 -0.714136| |Pb|
 *   |B|   |1.000000  1.772000  0.000000| |Pr|
 *   Scaled, normalized, rounded and tweaked to yield RGB 565:
 *   |R|   |74   0 101| |Y' -  16| >> 9
 *   |G| = |74 -24 -51| |Cb - 128| >> 8
 *   |B|   |74 128   0| |Cr - 128| >> 9
*/

#define RGBYFAC   74   /*  1.0      */
#define RVFAC    101   /*  1.402    */
#define GVFAC   (-51)  /* -0.714136 */
#define GUFAC   (-24)  /* -0.334136 */
#define BUFAC    128   /*  1.772    */

/* ROUNDOFFS contain constant for correct round-offs as well as
   constant parts of the conversion matrix (e.g. (Y'-16)*RGBYFAC
   -> constant part = -16*RGBYFAC). Through extraction of these
   constant parts we save at leat 4 substractions in the conversion
   loop */
#define ROUNDOFFSR (256 - 16*RGBYFAC - 128*RVFAC)
#define ROUNDOFFSG (128 - 16*RGBYFAC - 128*GVFAC - 128*GUFAC)
#define ROUNDOFFSB (256 - 16*RGBYFAC             - 128*BUFAC)

#define MAX_5BIT 0x1f
#define MAX_6BIT 0x3f

/* Performance function to blit a YUV bitmap directly to the LCD */
void lcd_blit_yuv(unsigned char * const src[3],
                  int src_x, int src_y, int stride,
                  int x, int y, int width, int height)
{
    int h;
    int y0, x0, y1, x1;

    width = (width + 1) & ~1;

    x0 = x;                         /* start horiz */
    y0 = y;                         /* start vert */
    x1 = (x + width) - 1;           /* max horiz */
    y1 = (y + height) - 1;          /* max vert */

    if (lcd_type==0) {
        s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x0);
        s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS,   x1);
        s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS,  y0);
        s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS,    y1);

        s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET,  (x1 << 8) | x0);
        s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET,   (y1 << 8) | y0);

        s5l_lcd_write_cmd(0);
        s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
    } else {
        s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
        s5l_lcd_write_wdata(x0);            /* Start column */
        s5l_lcd_write_wdata(x1);            /* End column */

        s5l_lcd_write_cmd(R_ROW_ADDR_SET);
        s5l_lcd_write_wdata(y0);            /* Start row */
        s5l_lcd_write_wdata(y1);            /* End row */

        s5l_lcd_write_cmd(R_MEMORY_WRITE);
    }

    const int stride_div_csub_x = stride/CSUB_X;

    h = height;
    while (h > 0) {
        /* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */
        const unsigned char *ysrc = src[0] + stride * src_y + src_x;

        const int uvoffset = stride_div_csub_x * (src_y/CSUB_Y) +
                             (src_x/CSUB_X);

        const unsigned char *usrc = src[1] + uvoffset;
        const unsigned char *vsrc = src[2] + uvoffset;
        const unsigned char *row_end = ysrc + width;

        int yp, up, vp;
        int red1, green1, blue1;
        int red2, green2, blue2;

        int rc, gc, bc;

        do
        {
            up = *usrc++;
            vp = *vsrc++;
            rc = RVFAC * vp              + ROUNDOFFSR;
            gc = GVFAC * vp + GUFAC * up + ROUNDOFFSG;
            bc =              BUFAC * up + ROUNDOFFSB;
            
            /* Pixel 1 -> RGB565 */
            yp = *ysrc++ * RGBYFAC;
            red1   = (yp + rc) >> 9;
            green1 = (yp + gc) >> 8;
            blue1  = (yp + bc) >> 9;

            /* Pixel 2 -> RGB565 */
            yp = *ysrc++ * RGBYFAC;
            red2   = (yp + rc) >> 9;
            green2 = (yp + gc) >> 8;
            blue2  = (yp + bc) >> 9;

            /* Since out of bounds errors are relatively rare, we check two
               pixels at once to see if any components are out of bounds, and
               then fix whichever is broken. This works due to high values and
               negative values both being !=0 when bitmasking them.
               We first check for red and blue components (5bit range). */
            if ((red1 | blue1 | red2 | blue2) & ~MAX_5BIT)
            {
                if (red1  & ~MAX_5BIT)
                    red1  = (red1  >> 31) ? 0 : MAX_5BIT;
                if (blue1 & ~MAX_5BIT)
                    blue1 = (blue1 >> 31) ? 0 : MAX_5BIT;
                if (red2  & ~MAX_5BIT)
                    red2  = (red2  >> 31) ? 0 : MAX_5BIT;
                if (blue2 & ~MAX_5BIT)
                    blue2 = (blue2 >> 31) ? 0 : MAX_5BIT;
            }
            /* We second check for green component (6bit range) */
            if ((green1 | green2) & ~MAX_6BIT)
            {
                if (green1 & ~MAX_6BIT)
                    green1 = (green1 >> 31) ? 0 : MAX_6BIT;
                if (green2 & ~MAX_6BIT)
                    green2 = (green2 >> 31) ? 0 : MAX_6BIT;
            }

            /* output 2 pixels */
            while (LCD_STATUS & 0x08); /* wait while FIFO is half full */
            lcd_write_pixel((red1 << 11) | (green1 << 5) | blue1);
            lcd_write_pixel((red2 << 11) | (green2 << 5) | blue2);
        }
        while (ysrc < row_end);

        src_y++;
        h--;
    }
}