summaryrefslogtreecommitdiffstats
path: root/firmware/target/arm/s5l8700/ipodnano2g/nand-nano2g.c
blob: 9fdc92f9e8ece71d14eedc3618def970c6202717 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2009 by Michael Sparmann
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/


#include "config.h"
#include "panic.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include "inttypes.h"
#include "nand-target.h"
#include <pmu-target.h>
#include <mmu-arm.h>
#include <string.h>
#include "led.h"
#include "ata_idle_notify.h"


#define NAND_CMD_READ       0x00
#define NAND_CMD_PROGCNFRM  0x10
#define NAND_CMD_READ2      0x30
#define NAND_CMD_BLOCKERASE 0x60
#define NAND_CMD_GET_STATUS 0x70
#define NAND_CMD_PROGRAM    0x80
#define NAND_CMD_ERASECNFRM 0xD0
#define NAND_CMD_RESET      0xFF

#define NAND_STATUS_READY   0x40

static const struct nand_device_info_type nand_deviceinfotable[] =
{
    {0x1580F1EC, 1024, 968, 0x40, 6, 2, 1, 2, 1},
    {0x1580DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
    {0x15C1DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
    {0x1510DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x95C1DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x2514DCEC, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0x2514D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2555D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2555D5EC, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
    {0x2585D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0x9580DCAD, 4096, 3872, 0x40, 6, 3, 2, 3, 2},
    {0xA514D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA550D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA560D5AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA555D5AD, 8192, 7744, 0x80, 7, 3, 2, 3, 2},
    {0xA585D598, 8320, 7744, 0x80, 7, 3, 1, 2, 1},
    {0xA584D398, 4160, 3872, 0x80, 7, 3, 1, 2, 1},
    {0x95D1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x1580DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x15C1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x9590DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0xA594D32C, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2584DC2C, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0xA5D5D52C, 8192, 7744, 0x80, 7, 3, 2, 2, 1},
    {0x95D1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x1580DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x15C1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x9590DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0xA594D389, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2584DC89, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0xA5D5D589, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
    {0xA514D320, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0xA555D520, 8192, 3872, 0x80, 7, 2, 1, 2, 1}
};

static uint8_t nand_tunk1[4];
static uint8_t nand_twp[4];
static uint8_t nand_tunk2[4];
static uint8_t nand_tunk3[4];
static int nand_type[4];
static int nand_powered = 0;
static int nand_interleaved = 0;
static int nand_cached = 0;
static long nand_last_activity_value = -1;
static long nand_stack[DEFAULT_STACK_SIZE];

static struct mutex nand_mtx;
static struct wakeup nand_wakeup;
static struct mutex ecc_mtx;
static struct wakeup ecc_wakeup;

static uint8_t nand_data[0x800] STORAGE_ALIGN_ATTR;
static uint8_t nand_ctrl[0x200] STORAGE_ALIGN_ATTR;
static uint8_t nand_spare[0x40] STORAGE_ALIGN_ATTR;
static uint8_t nand_ecc[0x30] STORAGE_ALIGN_ATTR;


static uint32_t nand_unlock(uint32_t rc)
{
    led(false);
    nand_last_activity_value = current_tick;
    mutex_unlock(&nand_mtx);
    return rc;
}

static uint32_t ecc_unlock(uint32_t rc)
{
    mutex_unlock(&ecc_mtx);
    return rc;
}

static uint32_t nand_timeout(long timeout)
{
    if (TIME_AFTER(current_tick, timeout)) return 1;
    else
    {
        yield();
        return 0;
    }
}

static uint32_t nand_wait_rbbdone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_RBBDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_RBBDONE;
    return 0;
}

static uint32_t nand_wait_cmddone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_CMDDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_CMDDONE;
    return 0;
}

static uint32_t nand_wait_addrdone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_ADDRDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_ADDRDONE;
    return 0;
}

static uint32_t nand_wait_chip_ready(uint32_t bank)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & (FMCSTAT_BANK0READY << bank)))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = (FMCSTAT_BANK0READY << bank);
    return 0;
}

static void nand_set_fmctrl0(uint32_t bank, uint32_t flags)
{
    FMCTRL0 = (nand_tunk1[bank] << 16) | (nand_twp[bank] << 12)
            | (1 << 11) | 1 | (1 << (bank + 1)) | flags;
}

static uint32_t nand_send_cmd(uint32_t cmd)
{
    FMCMD = cmd;
    return nand_wait_rbbdone();
}

static uint32_t nand_send_address(uint32_t page, uint32_t offset)
{
    FMANUM = 4;
    FMADDR0 = (page << 16) | offset;
    FMADDR1 = (page >> 16) & 0xFF;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    return nand_wait_cmddone();
}

uint32_t nand_reset(uint32_t bank)
{
    nand_set_fmctrl0(bank, 0);
    if (nand_send_cmd(NAND_CMD_RESET)) return 1;
    if (nand_wait_chip_ready(bank)) return 1;
    FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
    sleep(0);
    return 0;
}

static uint32_t nand_wait_status_ready(uint32_t bank)
{
    long timeout = current_tick + HZ / 50;
    nand_set_fmctrl0(bank, 0);
    if ((FMCSTAT & (FMCSTAT_BANK0READY << bank)))
        FMCSTAT = (FMCSTAT_BANK0READY << bank);
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    if (nand_send_cmd(NAND_CMD_GET_STATUS)) return 1;
    while (1)
    {
        if (nand_timeout(timeout)) return 1;
        FMDNUM = 0;
        FMCTRL1 = FMCTRL1_DOREADDATA;
        if (nand_wait_addrdone()) return 1;
        if ((FMFIFO & NAND_STATUS_READY)) break;
        FMCTRL1 = FMCTRL1_CLEARRFIFO;
    }
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return nand_send_cmd(NAND_CMD_READ);
}

static void nand_transfer_data_start(uint32_t bank, uint32_t direction,
                                     void* buffer, uint32_t size)
{
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    FMDNUM = size - 1;
    FMCTRL1 = FMCTRL1_DOREADDATA << direction;
    DMACON3 = (2 << DMACON_DEVICE_SHIFT)
            | (direction << DMACON_DIRECTION_SHIFT)
            | (2 << DMACON_DATA_SIZE_SHIFT)
            | (3 << DMACON_BURST_LEN_SHIFT);
    while ((DMAALLST & DMAALLST_CHAN3_MASK))
        DMACOM3 = DMACOM_CLEARBOTHDONE;
    DMABASE3 = (uint32_t)buffer;
    DMATCNT3 = (size >> 4) - 1;
    clean_dcache();
    DMACOM3 = 4;
}

static uint32_t nand_transfer_data_collect(uint32_t direction)
{
    long timeout = current_tick + HZ / 50;
    while ((DMAALLST & DMAALLST_DMABUSY3))
        if (nand_timeout(timeout)) return 1;
    if (!direction) invalidate_dcache();
    if (nand_wait_addrdone()) return 1;
    if (!direction) FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
    else FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return 0;
}

static uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
                                   void* buffer, uint32_t size)
{
    nand_transfer_data_start(bank, direction, buffer, size);
    uint32_t rc = nand_transfer_data_collect(direction);
    return rc;
}

static void ecc_start(uint32_t size, void* databuffer, void* sparebuffer,
                      uint32_t type)
{
    mutex_lock(&ecc_mtx);
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    ECC_UNK1 = size;
    ECC_DATA_PTR = (uint32_t)databuffer;
    ECC_SPARE_PTR = (uint32_t)sparebuffer;
    clean_dcache();
    ECC_CTRL = type;
}

static uint32_t ecc_collect(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(SRCPND & INTMSK_ECC))
        if (nand_timeout(timeout)) return ecc_unlock(1);
    invalidate_dcache();
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    return ecc_unlock(ECC_RESULT);
}

static uint32_t ecc_decode(uint32_t size, void* databuffer, void* sparebuffer)
{
    ecc_start(size, databuffer, sparebuffer, ECCCTRL_STARTDECODING);
    uint32_t rc = ecc_collect();
    return rc;
}

static uint32_t ecc_encode(uint32_t size, void* databuffer, void* sparebuffer)
{
    ecc_start(size, databuffer, sparebuffer, ECCCTRL_STARTENCODING);
    ecc_collect();
    return 0;
}

static uint32_t nand_check_empty(uint8_t* buffer)
{
    uint32_t i, count;
    count = 0;
    for (i = 0; i < 0x40; i++) if (buffer[i] != 0xFF) count++;
    if (count < 2) return 1;
    return 0;
}

static uint32_t nand_get_chip_type(uint32_t bank)
{
    mutex_lock(&nand_mtx);
    uint32_t result;
    if (nand_reset(bank)) return nand_unlock(0xFFFFFFFE);
    if (nand_send_cmd(0x90)) return nand_unlock(0xFFFFFFFD);
    FMANUM = 0;
    FMADDR0 = 0;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    if (nand_wait_cmddone()) return nand_unlock(0xFFFFFFFC);
    FMDNUM = 4;
    FMCTRL1 = FMCTRL1_DOREADDATA;
    if (nand_wait_addrdone()) return nand_unlock(0xFFFFFFFB);
    result = FMFIFO;
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return nand_unlock(result);
}

void nand_set_active(void)
{
    nand_last_activity_value = current_tick;
}

long nand_last_activity(void)
{
    return nand_last_activity_value;
}

void nand_power_up(void)
{
    uint32_t i;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    PWRCONEXT &= ~0x40;
    PWRCON &= ~0x100000;
    PCON2 = 0x33333333;
    PDAT2 = 0;
    PCON3 = 0x11113333;
    PDAT3 = 0;
    PCON4 = 0x33333333;
    PDAT4 = 0;
    PCON5 = (PCON5 & ~0xF) | 3;
    PUNK5 = 1;
    pmu_ldo_set_voltage(4, 0x15);
    pmu_ldo_power_on(4);
    sleep(HZ / 20);
    nand_last_activity_value = current_tick;
    for (i = 0; i < 4; i++)
        if (nand_type[i] >= 0)
            if (nand_reset(i))
                panicf("nand_power_up: nand_reset(bank=%d) failed.",(unsigned int)i);
    nand_powered = 1;
    nand_last_activity_value = current_tick;
    mutex_unlock(&nand_mtx);
}

void nand_power_down(void)
{
    if (!nand_powered) return;
    mutex_lock(&nand_mtx);
    pmu_ldo_power_off(4);
    PCON2 = 0x11111111;
    PDAT2 = 0;
    PCON3 = 0x11111111;
    PDAT3 = 0;
    PCON4 = 0x11111111;
    PDAT4 = 0;
    PCON5 = (PCON5 & ~0xF) | 1;
    PUNK5 = 1;
    PWRCONEXT |= 0x40;
    PWRCON |= 0x100000;
    nand_powered = 0;
    mutex_unlock(&nand_mtx);
}

uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
                        void* sparebuffer, uint32_t doecc,
                        uint32_t checkempty)
{
    uint8_t* data = nand_data;
    uint8_t* spare = nand_spare;
    if (databuffer && !((uint32_t)databuffer & 0xf))
        data = (uint8_t*)databuffer;
    if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
        spare = (uint8_t*)sparebuffer;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    uint32_t rc, eccresult;
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    if (nand_send_cmd(NAND_CMD_READ)) return nand_unlock(1);
    if (nand_send_address(page, databuffer ? 0 : 0x800))
        return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_READ2)) return nand_unlock(1);
    if (nand_wait_status_ready(bank)) return nand_unlock(1);
    if (databuffer)
        if (nand_transfer_data(bank, 0, data, 0x800))
            return nand_unlock(1);
    rc = 0;
    if (!doecc)
    {
        if (databuffer && data != databuffer) memcpy(databuffer, data, 0x800);
        if (sparebuffer)
        {
            if (nand_transfer_data(bank, 0, spare, 0x40))
                return nand_unlock(1);
            if (sparebuffer && spare != sparebuffer) 
                memcpy(sparebuffer, spare, 0x800);
            if (checkempty)
                rc = nand_check_empty((uint8_t*)sparebuffer) << 1;
        }
        return nand_unlock(rc);
    }
    if (nand_transfer_data(bank, 0, spare, 0x40)) return nand_unlock(1);
    if (databuffer)
    {
        memcpy(nand_ecc, &spare[0xC], 0x28);
        rc |= (ecc_decode(3, data, nand_ecc) & 0xF) << 4;
        if (data != databuffer) memcpy(databuffer, data, 0x800);
    }
    memset(nand_ctrl, 0xFF, 0x200);
    memcpy(nand_ctrl, spare, 0xC);
    memcpy(nand_ecc, &spare[0x34], 0xC);
    eccresult = ecc_decode(0, nand_ctrl, nand_ecc);
    rc |= (eccresult & 0xF) << 8;
    if (sparebuffer)
    {
        if (spare != sparebuffer) memcpy(sparebuffer, spare, 0x40);
        if (eccresult & 1) memset(sparebuffer, 0xFF, 0xC);
        else memcpy(sparebuffer, nand_ctrl, 0xC);
    }
    if (checkempty) rc |= nand_check_empty(spare) << 1;

    return nand_unlock(rc);
}

static uint32_t nand_write_page_int(uint32_t bank, uint32_t page,
                                    void* databuffer, void* sparebuffer,
                                    uint32_t doecc, uint32_t wait)
{
    uint8_t* data = nand_data;
    uint8_t* spare = nand_spare;
    if (databuffer && !((uint32_t)databuffer & 0xf))
        data = (uint8_t*)databuffer;
    if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
        spare = (uint8_t*)sparebuffer;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    if (sparebuffer)
    {
        if (spare != sparebuffer) memcpy(spare, sparebuffer, 0x40);
    }
    else memset(spare, 0xFF, 0x40);
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    if (nand_send_cmd(NAND_CMD_PROGRAM)) return nand_unlock(1);
    if (nand_send_address(page, databuffer ? 0 : 0x800))
        return nand_unlock(1);
    if (databuffer && data != databuffer) memcpy(data, databuffer, 0x800);
    if (databuffer) nand_transfer_data_start(bank, 1, data, 0x800);
    if (doecc)
    {
        if (ecc_encode(3, data, nand_ecc)) return nand_unlock(1);
        memcpy(&spare[0xC], nand_ecc, 0x28);
        memset(nand_ctrl, 0xFF, 0x200);
        memcpy(nand_ctrl, spare, 0xC);
        if (ecc_encode(0, nand_ctrl, nand_ecc)) return nand_unlock(1);
        memcpy(&spare[0x34], nand_ecc, 0xC);
    }
    if (databuffer)
        if (nand_transfer_data_collect(1))
            return nand_unlock(1);
    if (sparebuffer || doecc)
        if (nand_transfer_data(bank, 1, spare, 0x40))
            return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_PROGCNFRM)) return nand_unlock(1);
    if (wait) if (nand_wait_status_ready(bank)) return nand_unlock(1);
    return nand_unlock(0);
}

uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    nand_set_fmctrl0(bank, 0);
    if (nand_send_cmd(NAND_CMD_BLOCKERASE)) return nand_unlock(1);
    FMANUM = 2;
    FMADDR0 = page;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    if (nand_wait_cmddone()) return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_ERASECNFRM)) return nand_unlock(1);
    if (nand_wait_status_ready(bank)) return nand_unlock(1);
    return nand_unlock(0);
}

uint32_t nand_read_page_fast(uint32_t page, void* databuffer,
                             void* sparebuffer, uint32_t doecc,
                             uint32_t checkempty)
{
    uint32_t i, rc = 0;
    if (((uint32_t)databuffer & 0xf) || ((uint32_t)sparebuffer & 0xf)
     || !databuffer || !sparebuffer || !doecc)
    {
        for (i = 0; i < 4; i++)
        {
            if (nand_type[i] < 0) continue;
            void* databuf = (void*)0;
            void* sparebuf = (void*)0;
            if (databuffer) databuf = (void*)((uint32_t)databuffer + 0x800 * i);
            if (sparebuffer) sparebuf = (void*)((uint32_t)sparebuffer + 0x40 * i);
            uint32_t ret = nand_read_page(i, page, databuf, sparebuf, doecc, checkempty);
            if (ret & 1) rc |= 1 << (i << 2);
            if (ret & 2) rc |= 2 << (i << 2);
            if (ret & 0x10) rc |= 4 << (i << 2);
            if (ret & 0x100) rc |= 8 << (i << 2);
        }
        return rc;
    }
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    uint8_t status[4];
    for (i = 0; i < 4; i++) status[i] = (nand_type[i] < 0);
    for (i = 0; i < 4; i++)
    {
        if (!status[i])
        {
            nand_set_fmctrl0(i, FMCTRL0_ENABLEDMA);
            if (nand_send_cmd(NAND_CMD_READ))
                status[i] = 1;
        }
        if (!status[i])
            if (nand_send_address(page, 0))
                status[i] = 1;
        if (!status[i])
            if (nand_send_cmd(NAND_CMD_READ2))
                status[i] = 1;
    }
    if (!status[0])
        if (nand_wait_status_ready(0))
            status[0] = 1;
    if (!status[0])
        if (nand_transfer_data(0, 0, databuffer, 0x800))
            status[0] = 1;
    if (!status[0])
        if (nand_transfer_data(0, 0, sparebuffer, 0x40))
            status[0] = 1;
    for (i = 1; i < 4; i++)
    {
        if (!status[i])
            if (nand_wait_status_ready(i))
                status[i] = 1;
        if (!status[i])
            nand_transfer_data_start(i, 0, (void*)((uint32_t)databuffer
                                                 + 0x800 * i), 0x800);
        if (!status[i - 1])
        {
            memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0xC), 0x28);
            ecc_start(3, (void*)((uint32_t)databuffer
                               + 0x800 * (i - 1)), nand_ecc, ECCCTRL_STARTDECODING);
        }
        if (!status[i])
            if (nand_transfer_data_collect(0))
                status[i] = 1;
        if (!status[i])
            nand_transfer_data_start(i, 0, (void*)((uint32_t)sparebuffer
                                                 + 0x40 * i), 0x40);
        if (!status[i - 1])
            if (ecc_collect() & 1)
                status[i - 1] = 4;
        if (!status[i - 1])
        {
            memset(nand_ctrl, 0xFF, 0x200);
            memcpy(nand_ctrl, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xC);
            memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0x34), 0xC);
            ecc_start(0, nand_ctrl, nand_ecc, ECCCTRL_STARTDECODING);
        }
        if (!status[i])
            if (nand_transfer_data_collect(0))
                status[i] = 1;
        if (!status[i - 1])
        {
            if (ecc_collect() & 1)
            {
                status[i - 1] |= 8;
                memset((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xFF, 0xC);
            }
            else memcpy((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), nand_ctrl, 0xC);
            if (checkempty)
                status[i - 1] |= nand_check_empty((void*)((uint32_t)sparebuffer
                                                        + 0x40 * (i - 1))) << 1;
        }
    }
    if (!status[i - 1])
    {
        memcpy(nand_ecc,(void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0xC), 0x28);
        if (ecc_decode(3, (void*)((uint32_t)databuffer
                                + 0x800 * (i - 1)), nand_ecc) & 1)
            status[i - 1] = 4;
    }
    if (!status[i - 1])
    {
        memset(nand_ctrl, 0xFF, 0x200);
        memcpy(nand_ctrl, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xC);
        memcpy(nand_ecc, (void*)((uint32_t)sparebuffer + 0x40 * (i - 1) + 0x34), 0xC);
        if (ecc_decode(0, nand_ctrl, nand_ecc) & 1)
        {
            status[i - 1] |= 8;
            memset((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), 0xFF, 0xC);
        }
        else memcpy((void*)((uint32_t)sparebuffer + 0x40 * (i - 1)), nand_ctrl, 0xC);
        if (checkempty)
            status[i - 1] |= nand_check_empty((void*)((uint32_t)sparebuffer
                                                    + 0x40 * (i - 1))) << 1;
    }
    for (i = 0; i < 4; i++)
        if (nand_type[i] < 0)
            rc |= status[i] << (i << 2);
    return nand_unlock(rc);
}

uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
                         void* sparebuffer, uint32_t doecc)
{
    return nand_write_page_int(bank, page, databuffer, sparebuffer, doecc, 1);
}

uint32_t nand_write_page_start(uint32_t bank, uint32_t page, void* databuffer,
                               void* sparebuffer, uint32_t doecc)
{
    if (((uint32_t)databuffer & 0xf) || ((uint32_t)sparebuffer & 0xf)
     || !databuffer || !sparebuffer || !doecc || !nand_interleaved)
        return nand_write_page_int(bank, page, databuffer, sparebuffer, doecc, !nand_interleaved);

    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    if (nand_send_cmd(NAND_CMD_PROGRAM))
        return nand_unlock(1);
    if (nand_send_address(page, 0))
        return nand_unlock(1);
    nand_transfer_data_start(bank, 1, databuffer, 0x800);
    if (ecc_encode(3, databuffer, nand_ecc))
        return nand_unlock(1);
    memcpy((void*)((uint32_t)sparebuffer + 0xC), nand_ecc, 0x28);
    memset(nand_ctrl, 0xFF, 0x200);
    memcpy(nand_ctrl, sparebuffer, 0xC);
    if (ecc_encode(0, nand_ctrl, nand_ecc))
        return nand_unlock(1);
    memcpy((void*)((uint32_t)sparebuffer + 0x34), nand_ecc, 0xC);
    if (nand_transfer_data_collect(0))
        return nand_unlock(1);
    if (nand_transfer_data(bank, 1, sparebuffer, 0x40))
        return nand_unlock(1);
    return nand_unlock(nand_send_cmd(NAND_CMD_PROGCNFRM));
}

uint32_t nand_write_page_collect(uint32_t bank)
{
    return nand_wait_status_ready(bank);
}

#if 0 /* currently unused */
static uint32_t nand_block_erase_fast(uint32_t page)
{
    uint32_t i, rc = 0;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    for (i = 0; i < 4; i++)
    {
        if (nand_type[i] < 0) continue;
        nand_set_fmctrl0(i, 0);
        if (nand_send_cmd(NAND_CMD_BLOCKERASE))
        {
            rc |= 1 << i;
            continue;
        }
        FMANUM = 2;
        FMADDR0 = page;
        FMCTRL1 = FMCTRL1_DOTRANSADDR;
        if (nand_wait_cmddone())
        {
            rc |= 1 << i;
            continue;
        }
        if (nand_send_cmd(NAND_CMD_ERASECNFRM)) rc |= 1 << i;
    }
    for (i = 0; i < 4; i++)
    {
        if (nand_type[i] < 0) continue;
        if (rc & (1 << i)) continue;
        if (nand_wait_status_ready(i)) rc |= 1 << i;
    }
    return nand_unlock(rc);
}
#endif

const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
{
    if (nand_type[bank] < 0)
        return (struct nand_device_info_type*)0;
    return &nand_deviceinfotable[nand_type[bank]];
}

static void nand_thread(void)
{
    while (1)
    {
        if (TIME_AFTER(current_tick, nand_last_activity_value + HZ / 5)
         && nand_powered)
        {
            call_storage_idle_notifys(false);
            nand_power_down();
        }
        sleep(HZ / 10);
    }
}

int nand_device_init(void)
{
    mutex_init(&nand_mtx);
    wakeup_init(&nand_wakeup);
    mutex_init(&ecc_mtx);
    wakeup_init(&ecc_wakeup);

    uint32_t type;
    uint32_t i, j;

    /* Assume there are 0 banks, to prevent
       nand_power_up from talking with them yet. */
    for (i = 0; i < 4; i++) nand_type[i] = -1;
    nand_power_up();

    /* Now that the flash is powered on, detect how
       many banks we really have and initialize them. */
    for (i = 0; i < 4; i++)
    {
        nand_tunk1[i] = 7;
        nand_twp[i] = 7;
        nand_tunk2[i] = 7;
        nand_tunk3[i] = 7;
        type = nand_get_chip_type(i);
        if (type >= 0xFFFFFFF0)
        {
            nand_type[i] = (int)type;
            continue;
        }
        for (j = 0; ; j++)
        {
            if (j == ARRAYLEN(nand_deviceinfotable)) break;
            else if (nand_deviceinfotable[j].id == type)
            {
                nand_type[i] = j;
                break;
            }
        }
        nand_tunk1[i] = nand_deviceinfotable[nand_type[i]].tunk1;
        nand_twp[i] = nand_deviceinfotable[nand_type[i]].twp;
        nand_tunk2[i] = nand_deviceinfotable[nand_type[i]].tunk2;
        nand_tunk3[i] = nand_deviceinfotable[nand_type[i]].tunk3;
    }
    if (nand_type[0] < 0) return nand_type[0];
    nand_interleaved = ((nand_type[0] >> 22) & 1);
    nand_cached = ((nand_type[0] >> 23) & 1);

    nand_last_activity_value = current_tick;
    create_thread(nand_thread, nand_stack,
                  sizeof(nand_stack), 0, "nand"
                  IF_PRIO(, PRIORITY_USER_INTERFACE)
                  IF_COP(, CPU));

    return 0;
}