summaryrefslogtreecommitdiffstats
path: root/firmware/target/arm/sandisk/ata-c200_e200.c
blob: f9c9f6fb3a6d66e64e87481582dbc387c888d629 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2006 Daniel Ankers
 *
 * All files in this archive are subject to the GNU General Public License.
 * See the file COPYING in the source tree root for full license agreement.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include "ata.h"
#include "hotswap-target.h"
#include "ata-target.h"
#include "ata_idle_notify.h"
#include "system.h"
#include <string.h>
#include "thread.h"
#include "led.h"
#include "disk.h"
#include "cpu.h"
#include "panic.h"
#include "usb.h"

#define BLOCK_SIZE      (512)
#define SECTOR_SIZE     (512)
#define BLOCKS_PER_BANK 0x7a7800

#define STATUS_REG      (*(volatile unsigned int *)(0x70008204))
#define REG_1           (*(volatile unsigned int *)(0x70008208))
#define UNKNOWN         (*(volatile unsigned int *)(0x70008210))
#define BLOCK_SIZE_REG  (*(volatile unsigned int *)(0x7000821c))
#define BLOCK_COUNT_REG (*(volatile unsigned int *)(0x70008220))
#define REG_5           (*(volatile unsigned int *)(0x70008224))
#define CMD_REG0        (*(volatile unsigned int *)(0x70008228))
#define CMD_REG1        (*(volatile unsigned int *)(0x7000822c))
#define CMD_REG2        (*(volatile unsigned int *)(0x70008230))
#define RESPONSE_REG    (*(volatile unsigned int *)(0x70008234))
#define SD_STATE_REG    (*(volatile unsigned int *)(0x70008238))
#define REG_11          (*(volatile unsigned int *)(0x70008240))
#define REG_12          (*(volatile unsigned int *)(0x70008244))
#define DATA_REG        (*(volatile unsigned int *)(0x70008280))

/* STATUS_REG bits */
#define DATA_DONE       (1 << 12)
#define CMD_DONE        (1 << 13)
#define ERROR_BITS      (0x3f)
#define READY_FOR_DATA  (1 << 8)
#define FIFO_FULL       (1 << 7)
#define FIFO_EMPTY      (1 << 6)

#define CMD_OK          0x0 /* Command was successful */
#define CMD_ERROR_2     0x2 /* SD did not respond to command (either it doesn't
                               understand the command or is not inserted) */

/* SD States */
#define IDLE            0
#define READY           1
#define IDENT           2
#define STBY            3
#define TRAN            4
#define DATA            5
#define RCV             6
#define PRG             7
#define DIS             8

#define FIFO_LEN        16          /* FIFO is 16 words deep */

/* SD Commands */
#define GO_IDLE_STATE         0
#define ALL_SEND_CID          2
#define SEND_RELATIVE_ADDR    3
#define SET_DSR               4
#define SWITCH_FUNC           6
#define SELECT_CARD           7
#define DESELECT_CARD         7
#define SEND_IF_COND          8
#define SEND_CSD              9
#define SEND_CID             10
#define STOP_TRANSMISSION    12
#define SEND_STATUS          13
#define GO_INACTIVE_STATE    15
#define SET_BLOCKLEN         16
#define READ_SINGLE_BLOCK    17
#define READ_MULTIPLE_BLOCK  18
#define SEND_NUM_WR_BLOCKS   22
#define WRITE_BLOCK          24
#define WRITE_MULTIPLE_BLOCK 25
#define ERASE_WR_BLK_START   32
#define ERASE_WR_BLK_END     33
#define ERASE                38
#define APP_CMD              55

#define EC_OK                    0
#define EC_FAILED                1
#define EC_NOCARD                2
#define EC_WAIT_STATE_FAILED     3
#define EC_CHECK_TIMEOUT_FAILED  4
#define EC_POWER_UP              5
#define EC_READ_TIMEOUT          6
#define EC_WRITE_TIMEOUT         7
#define EC_TRAN_SEL_BANK         8
#define EC_TRAN_READ_ENTRY       9
#define EC_TRAN_READ_EXIT       10
#define EC_TRAN_WRITE_ENTRY     11
#define EC_TRAN_WRITE_EXIT      12
#define EC_FIFO_SEL_BANK_EMPTY  13
#define EC_FIFO_SEL_BANK_DONE   14
#define EC_FIFO_ENA_BANK_EMPTY  15
#define EC_FIFO_READ_FULL       16
#define EC_FIFO_WR_EMPTY        17
#define EC_FIFO_WR_DONE         18
#define EC_COMMAND              19
#define NUM_EC                  20

/* Application Specific commands */
#define SET_BUS_WIDTH   6
#define SD_APP_OP_COND  41

/** global, exported variables **/
#ifdef HAVE_HOTSWAP
#define NUM_VOLUMES 2
#else
#define NUM_VOLUMES 1
#endif

/* for compatibility */
int ata_spinup_time = 0;

long last_disk_activity = -1;

/** static, private data **/ 
static bool initialized = false;

static long next_yield = 0;
#define MIN_YIELD_PERIOD 2000

static tSDCardInfo card_info[2];
static tSDCardInfo *currcard = NULL; /* current active card */

struct sd_card_status
{
    int retry;
    int retry_max;
};

static struct sd_card_status sd_status[NUM_VOLUMES] =
{
    { 0, 1  },
#ifdef HAVE_HOTSWAP
    { 0, 10 }
#endif
};

/* Shoot for around 75% usage */
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)];
static const char         sd_thread_name[] = "ata/sd";
static struct spinlock    sd_spin NOCACHEBSS_ATTR;
static struct event_queue sd_queue;

/* Posted when card plugged status has changed */
#define SD_HOTSWAP    1
/* Actions taken by sd_thread when card status has changed */
enum sd_thread_actions
{
    SDA_NONE      = 0x0,
    SDA_UNMOUNTED = 0x1,
    SDA_MOUNTED   = 0x2
};

/* Private Functions */

static unsigned int check_time[NUM_EC];

static inline bool sd_check_timeout(long timeout, int id)
{
    return !TIME_AFTER(USEC_TIMER, check_time[id] + timeout);
}

static bool sd_poll_status(unsigned int trigger, long timeout)
{
    long t = USEC_TIMER;

    while ((STATUS_REG & trigger) == 0)
    {
        long time = USEC_TIMER;

        if (TIME_AFTER(time, next_yield))
        {
            long ty = USEC_TIMER;
            priority_yield();
            timeout += USEC_TIMER - ty;
            next_yield = ty + MIN_YIELD_PERIOD;
        }

        if (TIME_AFTER(time, t + timeout))
            return false;
    }

    return true;
}

static int sd_command(unsigned int cmd, unsigned long arg1,
                      unsigned int *response, unsigned int type)
{
    int i, words; /* Number of 16 bit words to read from RESPONSE_REG */
    unsigned int data[9];

    CMD_REG0 = cmd;
    CMD_REG1 = (unsigned int)((arg1 & 0xffff0000) >> 16);
    CMD_REG2 = (unsigned int)((arg1 & 0xffff));
    UNKNOWN  = type;

    if (!sd_poll_status(CMD_DONE, 100000))
        return -EC_COMMAND;

    if ((STATUS_REG & ERROR_BITS) != CMD_OK)
        /* Error sending command */
        return -EC_COMMAND - (STATUS_REG & ERROR_BITS)*100;

    if (cmd == GO_IDLE_STATE)
        return 0; /* no response here */

    words = (type == 2) ? 9 : 3;

    for (i = 0; i < words; i++) /* RESPONSE_REG is read MSB first */
        data[i] = RESPONSE_REG; /* Read most significant 16-bit word */

    if (response == NULL)
    {
        /* response discarded */
    }
    else if (type == 2)
    {
        /* Response type 2 has the following structure:
         * [135:135] Start Bit - '0'
         * [134:134] Transmission bit - '0'
         * [133:128] Reserved - '111111'
         * [127:001] CID or CSD register including internal CRC7
         * [000:000] End Bit - '1'
         */
        response[3] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8);
        response[2] = (data[2]<<24) + (data[3]<<8) + (data[4]>>8);
        response[1] = (data[4]<<24) + (data[5]<<8) + (data[6]>>8);
        response[0] = (data[6]<<24) + (data[7]<<8) + (data[8]>>8);
    }
    else
    {
        /* Response types 1, 1b, 3, 6, 7 have the following structure:
         * Types 4 and 5 are not supported.
         *
         *     [47] Start bit - '0'
         *     [46] Transmission bit - '0'
         *  [45:40] R1, R1b, R6, R7: Command index
         *          R3: Reserved - '111111'
         *   [39:8] R1, R1b: Card Status
         *          R3: OCR Register
         *          R6: [31:16] RCA
         *              [15: 0] Card Status Bits 23, 22, 19, 12:0
         *                     [23] COM_CRC_ERROR
         *                     [22] ILLEGAL_COMMAND
         *                     [19] ERROR
         *                   [12:9] CURRENT_STATE
         *                      [8] READY_FOR_DATA
         *                    [7:6]
         *                      [5] APP_CMD
         *                      [4]
         *                      [3] AKE_SEQ_ERROR
         *                      [2] Reserved
         *                    [1:0] Reserved for test mode
         *          R7: [19:16] Voltage accepted
         *              [15:8]  echo-back of check pattern
         *    [7:1] R1, R1b: CRC7
         *          R3: Reserved - '1111111'
         *      [0] End Bit - '1'
         */
        response[0] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8);
    }

    return 0;
}

static int sd_wait_for_state(unsigned int state, int id)
{
    unsigned int response = 0;
    unsigned int timeout = 0x80000;

    check_time[id] = USEC_TIMER;

    while (1)
    {
        int ret = sd_command(SEND_STATUS, currcard->rca, &response, 1);
        long us;

        if (ret < 0)
            return ret*100 - id;

        if (((response >> 9) & 0xf) == state)
        {
            SD_STATE_REG = state;
            return 0;
        }

        if (!sd_check_timeout(timeout, id))
            return -EC_WAIT_STATE_FAILED*100 - id;

        us = USEC_TIMER;
        if (TIME_AFTER(us, next_yield))
        {
            priority_yield();
            timeout += USEC_TIMER - us;
            next_yield = us + MIN_YIELD_PERIOD;
        }
    }
}

static inline void copy_read_sectors_fast(unsigned char **buf)
{
    /* Copy one chunk of 16 words using best method for start alignment */
    switch ( (intptr_t)*buf & 3 )
    {
    case 0:
        asm volatile (
            "ldmia  %[data], { r2-r9 }          \r\n"
            "orr    r2, r2, r3, lsl #16         \r\n"
            "orr    r4, r4, r5, lsl #16         \r\n"
            "orr    r6, r6, r7, lsl #16         \r\n"
            "orr    r8, r8, r9, lsl #16         \r\n"
            "stmia  %[buf]!, { r2, r4, r6, r8 } \r\n"
            "ldmia  %[data], { r2-r9 }          \r\n"
            "orr    r2, r2, r3, lsl #16         \r\n"
            "orr    r4, r4, r5, lsl #16         \r\n"
            "orr    r6, r6, r7, lsl #16         \r\n"
            "orr    r8, r8, r9, lsl #16         \r\n"
            "stmia  %[buf]!, { r2, r4, r6, r8 } \r\n"
            : [buf]"+&r"(*buf)
            : [data]"r"(&DATA_REG)
            : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
        );
        break;
    case 1:
        asm volatile (
            "ldmia  %[data], { r2-r9 }          \r\n"
            "orr    r3, r2, r3, lsl #16         \r\n"
            "strb   r3, [%[buf]], #1            \r\n"
            "mov    r3, r3, lsr #8              \r\n"
            "strh   r3, [%[buf]], #2            \r\n"
            "mov    r3, r3, lsr #16             \r\n"
            "orr    r3, r3, r4, lsl #8          \r\n"
            "orr    r3, r3, r5, lsl #24         \r\n"
            "mov    r5, r5, lsr #8              \r\n"
            "orr    r5, r5, r6, lsl #8          \r\n"
            "orr    r5, r5, r7, lsl #24         \r\n"
            "mov    r7, r7, lsr #8              \r\n"
            "orr    r7, r7, r8, lsl #8          \r\n"
            "orr    r7, r7, r9, lsl #24         \r\n"
            "mov    r2, r9, lsr #8              \r\n"
            "stmia  %[buf]!, { r3, r5, r7 }     \r\n"
            "ldmia  %[data], { r3-r10 }         \r\n"
            "orr    r2, r2, r3, lsl #8          \r\n"
            "orr    r2, r2, r4, lsl #24         \r\n"
            "mov    r4, r4, lsr #8              \r\n"
            "orr    r4, r4, r5, lsl #8          \r\n"
            "orr    r4, r4, r6, lsl #24         \r\n"
            "mov    r6, r6, lsr #8              \r\n"
            "orr    r6, r6, r7, lsl #8          \r\n"
            "orr    r6, r6, r8, lsl #24         \r\n"
            "mov    r8, r8, lsr #8              \r\n"
            "orr    r8, r8, r9, lsl #8          \r\n"
            "orr    r8, r8, r10, lsl #24        \r\n"
            "mov    r10, r10, lsr #8            \r\n"
            "stmia  %[buf]!, { r2, r4, r6, r8 } \r\n"
            "strb   r10, [%[buf]], #1           \r\n"
            : [buf]"+&r"(*buf)
            : [data]"r"(&DATA_REG)
            : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
        );
        break;
    case 2:
        asm volatile (
            "ldmia  %[data], { r2-r9 }          \r\n"
            "strh   r2, [%[buf]], #2            \r\n"
            "orr    r3, r3, r4, lsl #16         \r\n"
            "orr    r5, r5, r6, lsl #16         \r\n"
            "orr    r7, r7, r8, lsl #16         \r\n"
            "stmia  %[buf]!, { r3, r5, r7 }     \r\n"
            "ldmia  %[data], { r2-r8, r10 }     \r\n"
            "orr    r2, r9, r2, lsl #16         \r\n"
            "orr    r3, r3, r4, lsl #16         \r\n"
            "orr    r5, r5, r6, lsl #16         \r\n"
            "orr    r7, r7, r8, lsl #16         \r\n"
            "stmia  %[buf]!, { r2, r3, r5, r7 } \r\n"
            "strh   r10, [%[buf]], #2           \r\n"
            : [buf]"+&r"(*buf)
            : [data]"r"(&DATA_REG)
            : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
        );
        break;
    case 3:
        asm volatile (
            "ldmia  %[data], { r2-r9 }          \r\n"
            "orr    r3, r2, r3, lsl #16         \r\n"
            "strb   r3, [%[buf]], #1            \r\n"
            "mov    r3, r3, lsr #8              \r\n"
            "orr    r3, r3, r4, lsl #24         \r\n"
            "mov    r4, r4, lsr #8              \r\n"
            "orr    r5, r4, r5, lsl #8          \r\n"
            "orr    r5, r5, r6, lsl #24         \r\n"
            "mov    r6, r6, lsr #8              \r\n"
            "orr    r7, r6, r7, lsl #8          \r\n"
            "orr    r7, r7, r8, lsl #24         \r\n"
            "mov    r8, r8, lsr #8              \r\n"
            "orr    r2, r8, r9, lsl #8          \r\n"
            "stmia  %[buf]!, { r3, r5, r7 }     \r\n"
            "ldmia  %[data], { r3-r10 }         \r\n"
            "orr    r2, r2, r3, lsl #24         \r\n"
            "mov    r3, r3, lsr #8              \r\n"
            "orr    r4, r3, r4, lsl #8          \r\n"
            "orr    r4, r4, r5, lsl #24         \r\n"
            "mov    r5, r5, lsr #8              \r\n"
            "orr    r6, r5, r6, lsl #8          \r\n"
            "orr    r6, r6, r7, lsl #24         \r\n"
            "mov    r7, r7, lsr #8              \r\n"
            "orr    r8, r7, r8, lsl #8          \r\n"
            "orr    r8, r8, r9, lsl #24         \r\n"
            "mov    r9, r9, lsr #8              \r\n"
            "orr    r10, r9, r10, lsl #8        \r\n"
            "stmia  %[buf]!, { r2, r4, r6, r8 } \r\n"
            "strh   r10, [%[buf]], #2           \r\n"
            "mov    r10, r10, lsr #16           \r\n"
            "strb   r10, [%[buf]], #1           \r\n"
            : [buf]"+&r"(*buf)
            : [data]"r"(&DATA_REG)
            : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
        );
        break;
    }
}

static inline void copy_read_sectors_slow(unsigned char** buf)
{
    int cnt = FIFO_LEN;
    int t;

    /* Copy one chunk of 16 words */
    asm volatile (
    "1:                                     \r\n"
        "ldrh   %[t], [%[data]]             \r\n"
        "strb   %[t], [%[buf]], #1          \r\n"
        "mov    %[t], %[t], lsr #8          \r\n"
        "strb   %[t], [%[buf]], #1          \r\n"
        "subs   %[cnt], %[cnt], #1          \r\n"
        "bgt    1b                          \r\n"
        : [cnt]"+&r"(cnt), [buf]"+&r"(*buf),
          [t]"=&r"(t)
        : [data]"r"(&DATA_REG)
    );
}

/* Writes have to be kept slow for now */
static inline void copy_write_sectors(const unsigned char** buf)
{
    int cnt = FIFO_LEN;
    unsigned t;

    do
    {
        t  = *(*buf)++;
        t |= *(*buf)++ << 8;
        DATA_REG = t;
    } while (--cnt > 0); /* tail loop is faster */
}

static int sd_select_bank(unsigned char bank)
{
    unsigned char card_data[512];
    const unsigned char* write_buf;
    int i, ret;

    memset(card_data, 0, 512);

    ret = sd_wait_for_state(TRAN, EC_TRAN_SEL_BANK);
    if (ret < 0)
        return ret;

    BLOCK_SIZE_REG = 512;
    BLOCK_COUNT_REG = 1;

    ret = sd_command(35, 0, NULL, 0x1c0d); /* CMD35 is vendor specific */
    if (ret < 0)
        return ret;

    SD_STATE_REG = PRG;

    card_data[0] = bank;

    /* Write the card data */
    write_buf = card_data;
    for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN)
    {
        /* Wait for the FIFO to empty */
        if (sd_poll_status(FIFO_EMPTY, 10000))
        {
            copy_write_sectors(&write_buf); /* Copy one chunk of 16 words */
            continue;
        }

        return -EC_FIFO_SEL_BANK_EMPTY;
    }

    if (!sd_poll_status(DATA_DONE, 10000))
        return -EC_FIFO_SEL_BANK_DONE;

    currcard->current_bank = bank;

    return 0;
}

static void sd_card_mux(int card_no)
{
/* Set the current card mux */
#ifdef SANSA_E200
    if (card_no == 0)
    {
        GPO32_VAL |= 0x4;

        GPIOA_ENABLE     &= ~0x7a;
        GPIOA_OUTPUT_EN  &= ~0x7a;
        GPIOD_ENABLE     |=  0x1f;
        GPIOD_OUTPUT_VAL |=  0x1f;
        GPIOD_OUTPUT_EN  |=  0x1f;

        outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014);
    }
    else
    {
        GPO32_VAL &= ~0x4;

        GPIOD_ENABLE     &= ~0x1f;
        GPIOD_OUTPUT_EN  &= ~0x1f;
        GPIOA_ENABLE     |=  0x7a;
        GPIOA_OUTPUT_VAL |=  0x7a;
        GPIOA_OUTPUT_EN  |=  0x7a;

        outl(inl(0x70000014) & ~(0x3ffff), 0x70000014);
    }
#else /* SANSA_C200 */
    if (card_no == 0)
    {
        GPO32_VAL |= 0x4;

        GPIOD_ENABLE     &= ~0x1f;
        GPIOD_OUTPUT_EN  &= ~0x1f;
        GPIOA_ENABLE     |=  0x7a;
        GPIOA_OUTPUT_VAL |=  0x7a;
        GPIOA_OUTPUT_EN  |=  0x7a;

        outl(inl(0x70000014) & ~(0x3ffff), 0x70000014);
    }
    else
    {
        GPO32_VAL &= ~0x4;

        GPIOA_ENABLE     &= ~0x7a;
        GPIOA_OUTPUT_EN  &= ~0x7a;
        GPIOD_ENABLE     |=  0x1f;
        GPIOD_OUTPUT_VAL |=  0x1f;
        GPIOD_OUTPUT_EN  |=  0x1f;

        outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014);
    }
#endif
}

static void sd_init_device(int card_no)
{
/* SD Protocol registers */
#ifdef HAVE_HOTSWAP
    unsigned int response = 0;
#endif
    unsigned int  i;
    unsigned int  c_size;
    unsigned long c_mult;
    unsigned char carddata[512];
    unsigned char *dataptr;
    int ret;

/* Enable and initialise controller */
    REG_1 = 6;

/* Initialise card data as blank */
    memset(currcard, 0, sizeof(*currcard));

/* Switch card mux to card to initialize */
    sd_card_mux(card_no);

/* Init NAND */
    REG_11 |=  (1 << 15);
    REG_12 |=  (1 << 15);
    REG_12 &= ~(3 << 12);
    REG_12 |=  (1 << 13);
    REG_11 &= ~(3 << 12);
    REG_11 |=  (1 << 13);

    DEV_EN |= DEV_ATA; /* Enable controller */
    DEV_RS |= DEV_ATA; /* Reset controller */
    DEV_RS &=~DEV_ATA; /* Clear Reset */

    SD_STATE_REG = TRAN;

    REG_5 = 0xf;

    ret = sd_command(GO_IDLE_STATE, 0, NULL, 256);
    if (ret < 0)
        goto card_init_error;

    check_time[EC_POWER_UP] = USEC_TIMER;

#ifdef HAVE_HOTSWAP
    /* Check for SDHC:
       - non-SDHC cards simply ignore SEND_IF_COND (CMD8) and we get error -219,
         which we can just ignore and assume we're dealing with standard SD.
       - SDHC cards echo back the argument into the response. This is how we
         tell if the card is SDHC.
     */
    ret = sd_command(SEND_IF_COND,0x1aa, &response,7);
    if ( (ret < 0) && (ret!=-219) )
            goto card_init_error;
#endif

    while ((currcard->ocr & (1 << 31)) == 0) /* until card is powered up */
    {
        ret = sd_command(APP_CMD, currcard->rca, NULL, 1);
        if (ret < 0)
            goto card_init_error;

#ifdef HAVE_HOTSWAP
        if(response == 0x1aa)
        {
            /* SDHC */
            ret = sd_command(SD_APP_OP_COND, (1<<30)|0x100000,
                             &currcard->ocr, 3);
        }
        else
#endif /* HAVE_HOTSWAP */
        {
            /* SD Standard */
            ret = sd_command(SD_APP_OP_COND, 0x100000, &currcard->ocr, 3);
        }

        if (ret < 0)
            goto card_init_error;

        if (!sd_check_timeout(5000000, EC_POWER_UP))
        {
            ret = -EC_POWER_UP;
            goto card_init_error;
        }
    }

    ret = sd_command(ALL_SEND_CID, 0, currcard->cid, 2);
    if (ret < 0)
        goto card_init_error;

    ret = sd_command(SEND_RELATIVE_ADDR, 0, &currcard->rca, 1);
    if (ret < 0)
        goto card_init_error;

    ret = sd_command(SEND_CSD, currcard->rca, currcard->csd, 2);
    if (ret < 0)
        goto card_init_error;

    /* These calculations come from the Sandisk SD card product manual */
    if( (currcard->csd[3]>>30) == 0)
    {
        /* CSD version 1.0 */
        c_size = ((currcard->csd[2] & 0x3ff) << 2) + (currcard->csd[1]>>30) + 1;
        c_mult = 4 << ((currcard->csd[1] >> 15) & 7);
        currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 15);
        currcard->block_size = BLOCK_SIZE;     /* Always use 512 byte blocks */
        currcard->numblocks = c_size * c_mult * (currcard->max_read_bl_len/512);
        currcard->capacity = currcard->numblocks * currcard->block_size;
    }
#ifdef HAVE_HOTSWAP
    else if( (currcard->csd[3]>>30) == 1)
    {
        /* CSD version 2.0 */
        c_size = ((currcard->csd[2] & 0x3f) << 16) + (currcard->csd[1]>>16) + 1;
        currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 0xf);
        currcard->block_size = BLOCK_SIZE;     /* Always use 512 byte blocks */
        currcard->numblocks = c_size;
        currcard->capacity = currcard->numblocks * currcard->block_size;
    }
#endif /* HAVE_HOTSWAP */
    
    REG_1 = 0;

    ret = sd_command(SELECT_CARD, currcard->rca, NULL, 129);
    if (ret < 0)
        goto card_init_error;

    ret = sd_command(APP_CMD, currcard->rca, NULL, 1);
    if (ret < 0)
        goto card_init_error;

    ret = sd_command(SET_BUS_WIDTH, currcard->rca | 2, NULL, 1); /* 4 bit */
    if (ret < 0)
        goto card_init_error;

    ret = sd_command(SET_BLOCKLEN, currcard->block_size, NULL, 1);
    if (ret < 0)
        goto card_init_error;

    BLOCK_SIZE_REG = currcard->block_size;

    /* If this card is >4GB & not SDHC, then we need to enable bank switching */
    if( (currcard->numblocks >= BLOCKS_PER_BANK) &&
        ((currcard->ocr & (1<<30)) == 0) )
    {
        SD_STATE_REG = TRAN;
        BLOCK_COUNT_REG = 1;

        ret = sd_command(SWITCH_FUNC, 0x80ffffef, NULL, 0x1c05);
        if (ret < 0)
            goto card_init_error;

        /* Read 512 bytes from the card.
        The first 512 bits contain the status information
        TODO: Do something useful with this! */
        dataptr = carddata;
        for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN)
        {
            /* Wait for the FIFO to be full */
            if (sd_poll_status(FIFO_FULL, 100000))
            {
                copy_read_sectors_slow(&dataptr);
                continue;
            }

            ret = -EC_FIFO_ENA_BANK_EMPTY;
            goto card_init_error;
        }
    }

    currcard->initialized = 1;
    return;

    /* Card failed to initialize so disable it */
card_init_error:
    currcard->initialized = ret;
}

/* lock must already be aquired */
static void sd_select_device(int card_no)
{
    currcard = &card_info[card_no];

    if (card_no == 0)
    {
        /* Main card always gets a chance */
        sd_status[0].retry = 0;
    }

    if (currcard->initialized > 0)
    {
        /* This card is already initialized - switch to it */
        sd_card_mux(card_no);
        return;
    }

    if (currcard->initialized == 0)
    {
        /* Card needs (re)init */
        sd_init_device(card_no);
    }
}

/* API Functions */

void ata_led(bool onoff)
{
    led(onoff);
}

int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount,
                     void* inbuf)
{
#ifndef HAVE_HOTSWAP
    const int drive = 0;
#endif
    int ret;
    unsigned char *buf, *buf_end;
    int bank;
    
    /* TODO: Add DMA support. */

    spinlock_lock(&sd_spin);

    ata_led(true);

ata_read_retry:
    if (drive != 0 && (GPIOA_INPUT_VAL & 0x80) != 0)
    {
        /* no external sd-card inserted */
        ret = -EC_NOCARD;
        goto ata_read_error;
    }

    sd_select_device(drive);

    if (currcard->initialized < 0)
    {
        ret = currcard->initialized;
        goto ata_read_error;
    }

    last_disk_activity = current_tick;

    /* Only switch banks with non-SDHC cards */
    if((currcard->ocr & (1<<30))==0)
    {
        bank = start / BLOCKS_PER_BANK;

        if (currcard->current_bank != bank)
        {
            ret = sd_select_bank(bank);
            if (ret < 0)
                goto ata_read_error;
        }
    
        start -= bank * BLOCKS_PER_BANK;
    }

    ret = sd_wait_for_state(TRAN, EC_TRAN_READ_ENTRY);
    if (ret < 0)
        goto ata_read_error;

    BLOCK_COUNT_REG = incount;

#ifdef HAVE_HOTSWAP
    if(currcard->ocr & (1<<30) )
    {
        /* SDHC */
        ret = sd_command(READ_MULTIPLE_BLOCK, start, NULL, 0x1c25);
    }
    else
#endif
    {
        ret = sd_command(READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, NULL, 0x1c25);
    }
    if (ret < 0)
        goto ata_read_error;

    /* TODO: Don't assume BLOCK_SIZE == SECTOR_SIZE */

    buf_end = (unsigned char *)inbuf + incount * currcard->block_size;
    for (buf = inbuf; buf < buf_end;)
    {
        /* Wait for the FIFO to be full */
        if (sd_poll_status(FIFO_FULL, 0x80000))
        {
            copy_read_sectors_fast(&buf); /* Copy one chunk of 16 words */
            /* TODO: Switch bank if necessary */
            continue;
        }

        ret = -EC_FIFO_READ_FULL;
        goto ata_read_error;
    }

    last_disk_activity = current_tick;

    ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1);
    if (ret < 0)
        goto ata_read_error;

    ret = sd_wait_for_state(TRAN, EC_TRAN_READ_EXIT);
    if (ret < 0)
        goto ata_read_error;

    while (1)
    {
        ata_led(false);
        spinlock_unlock(&sd_spin);

        return ret;

ata_read_error:
        if (sd_status[drive].retry < sd_status[drive].retry_max
            && ret != -EC_NOCARD)
        {
            sd_status[drive].retry++;
            currcard->initialized = 0;
            goto ata_read_retry;
        }
    }
}

int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
                      const void* outbuf)
{
/* Write support is not finished yet */
/* TODO: The standard suggests using ACMD23 prior to writing multiple blocks
   to improve performance */
#ifndef HAVE_HOTSWAP
    const int drive = 0;
#endif
    int ret;
    const unsigned char *buf, *buf_end;
    int bank;

    spinlock_lock(&sd_spin);

    ata_led(true);

ata_write_retry:
    if (drive != 0 && (GPIOA_INPUT_VAL & 0x80) != 0)
    {
        /* no external sd-card inserted */
        ret = -EC_NOCARD;
        goto ata_write_error;
    }

    sd_select_device(drive);

    if (currcard->initialized < 0)
    {
        ret = currcard->initialized;
        goto ata_write_error;
    }

    /* Only switch banks with non-SDHC cards */
    if((currcard->ocr & (1<<30))==0)
    {
        bank = start / BLOCKS_PER_BANK;

        if (currcard->current_bank != bank)
        {
            ret = sd_select_bank(bank);
            if (ret < 0)
                goto ata_write_error;
        }
    
        start -= bank * BLOCKS_PER_BANK;
    }

    check_time[EC_WRITE_TIMEOUT] = USEC_TIMER;

    ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_ENTRY);
    if (ret < 0)
        goto ata_write_error;

    BLOCK_COUNT_REG = count;

#ifdef HAVE_HOTSWAP
    if(currcard->ocr & (1<<30) )
    {
        /* SDHC */
        ret = sd_command(WRITE_MULTIPLE_BLOCK, start, NULL, 0x1c2d);
    }
    else
#endif
    {
        ret = sd_command(WRITE_MULTIPLE_BLOCK, start*BLOCK_SIZE, NULL, 0x1c2d);
    }
    if (ret < 0)
        goto ata_write_error;

    buf_end = outbuf + count * currcard->block_size - 2*FIFO_LEN;

    for (buf = outbuf; buf <= buf_end;)
    {
        if (buf == buf_end)
        {
            /* Set SD_STATE_REG to PRG for the last buffer fill */
            SD_STATE_REG = PRG;
        }

        udelay(2); /* needed here (loop is too fast :-) */

        /* Wait for the FIFO to empty */
        if (sd_poll_status(FIFO_EMPTY, 0x80000))
        {
            copy_write_sectors(&buf); /* Copy one chunk of 16 words */
            /* TODO: Switch bank if necessary */
            continue;
        }

        ret = -EC_FIFO_WR_EMPTY;
        goto ata_write_error;
    }

    last_disk_activity = current_tick;

    if (!sd_poll_status(DATA_DONE, 0x80000))
    {
        ret = -EC_FIFO_WR_DONE;
        goto ata_write_error;
    }

    ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1);
    if (ret < 0)
        goto ata_write_error;

    ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_EXIT);
    if (ret < 0)
        goto ata_write_error;

    while (1)
    {
        ata_led(false);
        spinlock_unlock(&sd_spin);

        return ret;

ata_write_error:
        if (sd_status[drive].retry < sd_status[drive].retry_max
            && ret != -EC_NOCARD)
        {
            sd_status[drive].retry++;
            currcard->initialized = 0;
            goto ata_write_retry;
        }
    }
}

static void sd_thread(void) __attribute__((noreturn));
static void sd_thread(void)
{
    struct queue_event ev;
    bool idle_notified = false;
    
    while (1)
    {
        queue_wait_w_tmo(&sd_queue, &ev, HZ);

        switch ( ev.id ) 
        {
#ifdef HAVE_HOTSWAP
        case SD_HOTSWAP:
        {
            int action = SDA_NONE;

            /* Lock to keep us from messing with this variable while an init
               may be in progress */
            spinlock_lock(&sd_spin);
            card_info[1].initialized = 0;
            sd_status[1].retry = 0;

            /* Either unmount because the card was pulled or unmount and
               remount if already mounted since multiple messages may be
               generated for the same event - like someone inserting a new
               card before anything detects the old one pulled :) */
            if (disk_unmount(1) != 0)  /* release "by force" */
                action |= SDA_UNMOUNTED;

            if (ev.data != 0 && disk_mount(1) != 0) /* mount SD-CARD */
                action |= SDA_MOUNTED;

            if (action & SDA_UNMOUNTED)
                queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);

            if (action & SDA_MOUNTED)
                queue_broadcast(SYS_HOTSWAP_INSERTED, 0);

            if (action != SDA_NONE)
                queue_broadcast(SYS_FS_CHANGED, 0);

            spinlock_unlock(&sd_spin);
            break;
            } /* SD_HOTSWAP */
#endif /* HAVE_HOTSWAP */
        case SYS_TIMEOUT:
            if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
            {
                idle_notified = false;
            }
            else
            {
                /* never let a timer wrap confuse us */
                next_yield = USEC_TIMER;

                if (!idle_notified)
                {
                    call_ata_idle_notifys(false);
                    idle_notified = true;
                }
            }
            break;
        case SYS_USB_CONNECTED:
            usb_acknowledge(SYS_USB_CONNECTED_ACK);
            /* Wait until the USB cable is extracted again */
            usb_wait_for_disconnect(&sd_queue);
            break;
        }
    }
}


void ata_spindown(int seconds)
{
    (void)seconds;
}

bool ata_disk_is_active(void)
{
    return 0;
}

void ata_sleep(void)
{
}

void ata_spin(void)
{
}

/* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */
int ata_hard_reset(void)
{
    return 0;
}

int ata_soft_reset(void)
{
    return 0;
}

void ata_enable(bool on)
{
    if(on)
    {
        DEV_EN |= DEV_ATA; /* Enable controller */
    }
    else
    {
        DEV_EN &= ~DEV_ATA; /* Disable controller */
    }
}

int ata_init(void)
{
    int ret = 0;

    ata_led(false);

    /* NOTE: This init isn't dual core safe */
    if (!initialized)
    {
        initialized = true;

        spinlock_init(&sd_spin IF_COP(, SPINLOCK_TASK_SWITCH));

        spinlock_lock(&sd_spin);

        /* init controller */
        outl(inl(0x70000088) & ~(0x4), 0x70000088);
        outl(inl(0x7000008c) & ~(0x4), 0x7000008c);
        GPO32_ENABLE |= 0x4;

        GPIOG_ENABLE     |= (0x3 << 5);
        GPIOG_OUTPUT_EN  |= (0x3 << 5);
        GPIOG_OUTPUT_VAL |= (0x3 << 5);

#ifdef HAVE_HOTSWAP
        /* enable card detection port - mask interrupt first */
#ifdef SANSA_E200
        GPIOA_INT_EN     &= ~0x80;

        GPIOA_OUTPUT_EN  &= ~0x80;
        GPIOA_ENABLE     |=  0x80;
#elif defined SANSA_C200
        GPIOL_INT_EN     &= ~0x08;

        GPIOL_OUTPUT_EN  &= ~0x08;
        GPIOL_ENABLE     |=  0x08;
#endif
#endif
        sd_select_device(0);

        if (currcard->initialized < 0)
            ret = currcard->initialized;

        queue_init(&sd_queue, true);
        create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
            sd_thread_name IF_PRIO(, PRIORITY_SYSTEM) IF_COP(, CPU));

        /* enable interupt for the mSD card */
        sleep(HZ/10);
#ifdef HAVE_HOTSWAP
#ifdef SANSA_E200
        CPU_INT_EN = HI_MASK;
        CPU_HI_INT_EN = GPIO0_MASK;

        GPIOA_INT_LEV = (GPIOA_INT_LEV & ~0x80) | (~GPIOA_INPUT_VAL & 0x80);

        GPIOA_INT_CLR = 0x80;
        GPIOA_INT_EN |= 0x80;
#elif defined SANSA_C200
        CPU_INT_EN = HI_MASK;
        CPU_HI_INT_EN = GPIO2_MASK;

        GPIOL_INT_LEV = (GPIOL_INT_LEV & ~0x08) | (~GPIOL_INPUT_VAL & 0x08);

        GPIOL_INT_CLR = 0x08;
        GPIOL_INT_EN |= 0x08;
#endif
#endif
        spinlock_unlock(&sd_spin);
    }

    return ret;
}

/* move the sd-card info to mmc struct */
tCardInfo *card_get_info_target(int card_no)
{
    int i, temp;
    static tCardInfo card;
    static const char mantissa[] = {  /* *10 */
        0,  10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
    static const int exponent[] = {  /* use varies */
      1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 };

    card.initialized  = card_info[card_no].initialized;
    card.ocr          = card_info[card_no].ocr;
    for(i=0; i<4; i++)  card.csd[i] = card_info[card_no].csd[3-i];
    for(i=0; i<4; i++)  card.cid[i] = card_info[card_no].cid[3-i];
    card.numblocks    = card_info[card_no].numblocks;
    card.blocksize    = card_info[card_no].block_size;
    card.size         = card_info[card_no].capacity < 0xffffffff ?
                        card_info[card_no].capacity : 0xffffffff;
    card.block_exp    = card_info[card_no].block_exp;
    temp              = card_extract_bits(card.csd, 29, 3);
    card.speed        = mantissa[card_extract_bits(card.csd, 25, 4)]
                      * exponent[temp > 2 ? 7 : temp + 4];
    card.nsac         = 100 * card_extract_bits(card.csd, 16, 8);
    temp              = card_extract_bits(card.csd, 13, 3);
    card.tsac         = mantissa[card_extract_bits(card.csd, 9, 4)]
                      * exponent[temp] / 10;
    card.cid[0]       = htobe32(card.cid[0]); /* ascii chars here */
    card.cid[1]       = htobe32(card.cid[1]); /* ascii chars here */
    temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */
    *((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3;

    return &card;
}

#ifdef HAVE_HOTSWAP
bool card_detect_target(void)
{
#ifdef SANSA_E200
    return (GPIOA_INPUT_VAL & 0x80) == 0; /* low active */
#elif defined SANSA_C200
    return (GPIOL_INPUT_VAL & 0x08) != 0; /* high active */
#endif
}

static bool sd1_oneshot_callback(struct timeout *tmo)
{
    /* Take final state only - insert/remove is bouncy */
    queue_remove_from_head(&sd_queue, SD_HOTSWAP);
    queue_post(&sd_queue, SD_HOTSWAP, tmo->data);
    return false;
}

/* called on insertion/removal interrupt */
void microsd_int(void)
{
    static struct timeout sd1_oneshot;

#ifdef SANSA_E200
    int detect = GPIOA_INPUT_VAL & 0x80;

    GPIOA_INT_LEV = (GPIOA_INT_LEV & ~0x80) | (detect ^ 0x80);
    GPIOA_INT_CLR = 0x80;

    timeout_register(&sd1_oneshot, sd1_oneshot_callback,
                     detect ? 1 : HZ/2, detect == 0);
#elif defined SANSA_C200
    int detect = GPIOL_INPUT_VAL & 0x08;

    GPIOL_INT_LEV = (GPIOL_INT_LEV & ~0x08) | (detect ^ 0x08);
    GPIOL_INT_CLR = 0x08;

    timeout_register(&sd1_oneshot, sd1_oneshot_callback,
                     detect ? HZ/2 : 1, detect != 0);
#endif

}
#endif /* HAVE_HOTSWAP */