summaryrefslogtreecommitdiffstats
path: root/firmware/target/mips/ingenic_jz47xx/ata-sd-jz4760.c
blob: 8da1313cf8113fdf82ba44946c358e02ee5b6fb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2016 by Roman Stolyarov
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include "config.h"
#include "gcc_extensions.h"
#include "cpu.h"
#include "ata-sd-target.h"
#include "dma-target.h"
#include "led.h"
#include "sdmmc.h"
#include "logf.h"
#include "storage.h"
#include "string.h"
#include "panic.h"

#define SD_INTERRUPT 0   // COMPLETELY BROKEN!
#define SD_DMA_ENABLE 1
#define SD_DMA_INTERRUPT 1  // HANGS RANDOMLY!
#define SD_AUTO_CLOCK 1

#if NUM_DRIVES > 2
#error "JZ4760 SD driver supports NUM_DRIVES <= 2 only"
#endif

static long               last_disk_activity = -1;
static tCardInfo          card[NUM_DRIVES];
static char               active[NUM_DRIVES];

#if defined(CONFIG_STORAGE_MULTI) || defined(HAVE_HOTSWAP)
static int                sd_drive_nr = 0;
#else
#define                   sd_drive_nr 0
#endif

static struct mutex       sd_mtx[NUM_DRIVES];
#if SD_DMA_INTERRUPT || SD_INTERRUPT
static struct semaphore   sd_wakeup[NUM_DRIVES];
#endif

static int                use_4bit[NUM_DRIVES];
static int                num_6[NUM_DRIVES];
static int                sd2_0[NUM_DRIVES];


//#define DEBUG(x...)         logf(x)
#define DEBUG(x, ...)

/* volumes */
#define SD_SLOT_1  0       /* SD card 1 */
#define SD_SLOT_2  1       /* SD card 2 */

#define MSC_CHN(n) (2-n)

#define SD_IRQ_MASK(n)                \
do {                                  \
          REG_MSC_IMASK(n) = 0xffff;  \
          REG_MSC_IREG(n) = 0xffff;   \
} while (0)

/* Error codes */
enum sd_result_t
{
    SD_NO_RESPONSE        = -1,
    SD_NO_ERROR           = 0,
    SD_ERROR_OUT_OF_RANGE,
    SD_ERROR_ADDRESS,
    SD_ERROR_BLOCK_LEN,
    SD_ERROR_ERASE_SEQ,
    SD_ERROR_ERASE_PARAM,
    SD_ERROR_WP_VIOLATION,
    SD_ERROR_CARD_IS_LOCKED,
    SD_ERROR_LOCK_UNLOCK_FAILED,
    SD_ERROR_COM_CRC,
    SD_ERROR_ILLEGAL_COMMAND,
    SD_ERROR_CARD_ECC_FAILED,
    SD_ERROR_CC,
    SD_ERROR_GENERAL,
    SD_ERROR_UNDERRUN,
    SD_ERROR_OVERRUN,
    SD_ERROR_CID_CSD_OVERWRITE,
    SD_ERROR_STATE_MISMATCH,
    SD_ERROR_HEADER_MISMATCH,
    SD_ERROR_TIMEOUT,
    SD_ERROR_CRC,
    SD_ERROR_DRIVER_FAILURE,
};

/* Standard MMC/SD clock speeds */
#define MMC_CLOCK_SLOW    400000      /* 400 kHz for initial setup */
#define SD_CLOCK_FAST   24000000      /* 24 MHz for SD Cards */
#define SD_CLOCK_HIGH   48000000      /* 48 MHz for SD Cards */

/* Extra commands for state control */
/* Use negative numbers to disambiguate */
#define SD_CIM_RESET            -1

/* Proprietary commands, illegal/reserved according to SD Specification 2.00 */
    /* class 1 */
#define SD_READ_DAT_UNTIL_STOP  11   /* adtc [31:0]  dadr       R1  */

    /* class 3 */
#define SD_WRITE_DAT_UNTIL_STOP 20   /* adtc [31:0]  data addr  R1  */

    /* class 4 */
#define SD_PROGRAM_CID          26   /* adtc                    R1  */
#define SD_PROGRAM_CSD          27   /* adtc                    R1  */

    /* class 9 */
#define SD_GO_IRQ_STATE         40   /* bcr                     R5  */

/* Don't change the order of these; they are used in dispatch tables */
enum sd_rsp_t
{
    RESPONSE_NONE    = 0,
    RESPONSE_R1      = 1,
    RESPONSE_R1B     = 2,
    RESPONSE_R2_CID  = 3,
    RESPONSE_R2_CSD  = 4,
    RESPONSE_R3      = 5,
    RESPONSE_R4      = 6,
    RESPONSE_R5      = 7,
    RESPONSE_R6      = 8,
    RESPONSE_R7      = 9,
};

/* These are unpacked versions of the actual responses */
struct sd_response_r1
{
    unsigned char  cmd;
    unsigned int   status;
};

struct sd_response_r3
{
    unsigned int ocr;
};

#define SD_CARD_BUSY    0x80000000    /* Card Power up status bit */

struct sd_request
{
    int               index;      /* Slot index - used for CS lines */
    int               cmd;        /* Command to send */
    unsigned int      arg;        /* Argument to send */
    enum sd_rsp_t    rtype;      /* Response type expected */

    /* Data transfer (these may be modified at the low level) */
    unsigned short    nob;        /* Number of blocks to transfer*/
    unsigned short    block_len;  /* Block length */
    unsigned char     *buffer;    /* Data buffer */
    unsigned int      cnt;        /* Data length, for PIO */

    /* Results */
    unsigned char     response[18]; /* Buffer to store response - CRC is optional */
    enum sd_result_t result;
};

#define SD_OCR_ARG             0x00ff8000  /* Argument of OCR */

/***********************************************************************
 *  SD Events
 */
#define SD_EVENT_NONE            0x00    /* No events */
#define SD_EVENT_RX_DATA_DONE    0x01    /* Rx data done */
#define SD_EVENT_TX_DATA_DONE    0x02    /* Tx data done */
#define SD_EVENT_PROG_DONE       0x04    /* Programming is done */

/**************************************************************************
 * Utility functions
 **************************************************************************/

#define PARSE_U32(_buf,_index) \
    (((unsigned int)_buf[_index]) << 24) | (((unsigned int)_buf[_index+1]) << 16) | \
        (((unsigned int)_buf[_index+2]) << 8) | ((unsigned int)_buf[_index+3]);

#define PARSE_U16(_buf,_index) \
    (((unsigned short)_buf[_index]) << 8) | ((unsigned short)_buf[_index+1]);

static int sd_unpack_r1(struct sd_request *request, struct sd_response_r1 *r1)
{
    unsigned char *buf = request->response;

    if (request->result)
        return request->result;

    r1->cmd    = buf[0];
    r1->status = PARSE_U32(buf,1);

    DEBUG("sd_unpack_r1: cmd=%d status=%08x", r1->cmd, r1->status);

    if (SD_R1_STATUS(r1->status)) {
        if (r1->status & SD_R1_OUT_OF_RANGE)       return SD_ERROR_OUT_OF_RANGE;
        if (r1->status & SD_R1_ADDRESS_ERROR)      return SD_ERROR_ADDRESS;
        if (r1->status & SD_R1_BLOCK_LEN_ERROR)    return SD_ERROR_BLOCK_LEN;
        if (r1->status & SD_R1_ERASE_SEQ_ERROR)    return SD_ERROR_ERASE_SEQ;
        if (r1->status & SD_R1_ERASE_PARAM)        return SD_ERROR_ERASE_PARAM;
        if (r1->status & SD_R1_WP_VIOLATION)       return SD_ERROR_WP_VIOLATION;
        //if (r1->status & SD_R1_CARD_IS_LOCKED)     return SD_ERROR_CARD_IS_LOCKED;
        if (r1->status & SD_R1_LOCK_UNLOCK_FAILED) return SD_ERROR_LOCK_UNLOCK_FAILED;
        if (r1->status & SD_R1_COM_CRC_ERROR)      return SD_ERROR_COM_CRC;
        if (r1->status & SD_R1_ILLEGAL_COMMAND)    return SD_ERROR_ILLEGAL_COMMAND;
        if (r1->status & SD_R1_CARD_ECC_FAILED)    return SD_ERROR_CARD_ECC_FAILED;
        if (r1->status & SD_R1_CC_ERROR)           return SD_ERROR_CC;
        if (r1->status & SD_R1_ERROR)              return SD_ERROR_GENERAL;
        if (r1->status & SD_R1_UNDERRUN)           return SD_ERROR_UNDERRUN;
        if (r1->status & SD_R1_OVERRUN)            return SD_ERROR_OVERRUN;
        if (r1->status & SD_R1_CSD_OVERWRITE)      return SD_ERROR_CID_CSD_OVERWRITE;
    }

    if (buf[0] != request->cmd)
        return SD_ERROR_HEADER_MISMATCH;

    /* This should be last - it's the least dangerous error */

    return SD_NO_ERROR;
}

static int sd_unpack_r6(struct sd_request *request, struct sd_response_r1 *r1, unsigned long *rca)
{
    unsigned char *buf = request->response;

    if (request->result)
        return request->result;

    *rca = PARSE_U16(buf,1);  /* Save RCA returned by the SD Card */

    *(buf+1) = 0;
    *(buf+2) = 0;

    return sd_unpack_r1(request, r1);
}

static int sd_unpack_r3(struct sd_request *request, struct sd_response_r3 *r3)
{
    unsigned char *buf = request->response;

    if (request->result) return request->result;

    r3->ocr = PARSE_U32(buf,1);
    DEBUG("sd_unpack_r3: ocr=%08x", r3->ocr);

    if (buf[0] != 0x3f)
        return SD_ERROR_HEADER_MISMATCH;

    return SD_NO_ERROR;
}

/* Stop the MMC clock and wait while it happens */
static inline int jz_sd_stop_clock(const int drive)
{
    register int timeout = 1000;

    //DEBUG("stop MMC clock");
#if SD_AUTO_CLOCK
    REG_MSC_LPM(drive) = 0; /* disable auto clock stop */
#endif

    /* only stop if necessary */
    if (!(REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN))
       return SD_NO_ERROR;

    REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_STOP;

    while (timeout && (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN))
    {
        timeout--;
        if (timeout == 0)
        {
            DEBUG("Timeout on stop clock waiting");
            return SD_ERROR_TIMEOUT;
        }
        udelay(1);
    }

    //DEBUG("clock off time is %d microsec", timeout);
    return SD_NO_ERROR;
}

/* Start the MMC clock and operation */
static inline int jz_sd_start_clock(const int drive)
{
    int reg = MSC_STRPCL_START_OP;
#if !SD_AUTO_CLOCK
    reg |= (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_CLK_EN) ? 0 : MSC_STRPCL_CLOCK_CONTROL_START;
#endif
    REG_MSC_STRPCL(MSC_CHN(drive)) = reg;
    return SD_NO_ERROR;
}

static int jz_sd_check_status(const int drive, struct sd_request *request)
{
    (void)request;
    unsigned int status = REG_MSC_STAT(MSC_CHN(drive));

    /* Checking for response or data timeout */
    if (status & (MSC_STAT_TIME_OUT_RES | MSC_STAT_TIME_OUT_READ))
    {
        DEBUG("SD timeout, MSC_STAT 0x%x CMD %d", status,
               request->cmd);
        return SD_ERROR_TIMEOUT;
    }

    /* Checking for CRC error */
    if (status &
        (MSC_STAT_CRC_READ_ERROR | MSC_STAT_CRC_WRITE_ERROR |
         MSC_STAT_CRC_RES_ERR))
    {
        DEBUG("SD CRC error, MSC_STAT 0x%x", status);
        return SD_ERROR_CRC;
    }

    /* Checking for FIFO empty */
    /*if(status & MSC_STAT_DATA_FIFO_EMPTY && request->rtype != RESPONSE_NONE)
    {
        DEBUG("SD FIFO empty, MSC_STAT 0x%x", status);
        return SD_ERROR_UNDERRUN;
    }*/

    return SD_NO_ERROR;
}

/* Obtain response to the command and store it to response buffer */
static void jz_sd_get_response(const int drive, struct sd_request *request)
{
    int i;
    unsigned char *buf;
    unsigned short data;

    if (request->result != SD_NO_RESPONSE)
        return;

    DEBUG("fetch response for request %d, cmd %d", request->rtype,
          request->cmd);
    buf = request->response;
    request->result = SD_NO_ERROR;

    switch (request->rtype)
    {
        case RESPONSE_R1:
        case RESPONSE_R1B:
        case RESPONSE_R7:
        case RESPONSE_R6:
        case RESPONSE_R3:
        case RESPONSE_R4:
        case RESPONSE_R5:
        {
            data = REG_MSC_RES(MSC_CHN(drive));
            buf[0] = (data >> 8) & 0xff;
            buf[1] = data & 0xff;
            data = REG_MSC_RES(MSC_CHN(drive));
            buf[2] = (data >> 8) & 0xff;
            buf[3] = data & 0xff;
            data = REG_MSC_RES(MSC_CHN(drive));
            buf[4] = data & 0xff;

            DEBUG("request %d, response [%02x %02x %02x %02x %02x]",
                  request->rtype, buf[0], buf[1], buf[2],
                  buf[3], buf[4]);
            break;
        }
        case RESPONSE_R2_CID:
        case RESPONSE_R2_CSD:
        {
            for (i = 0; i < 16; i += 2)
            {
                data = REG_MSC_RES(MSC_CHN(drive));
                buf[i] = (data >> 8) & 0xff;
                buf[i + 1] = data & 0xff;
            }
            DEBUG("request %d, response []", request->rtype);
            break;
        }
        case RESPONSE_NONE:
            DEBUG("No response");
            break;

        default:
            DEBUG("unhandled response type for request %d",
                  request->rtype);
            break;
    }
}

#if SD_DMA_ENABLE
static int jz_sd_transmit_data_dma(const int drive, struct sd_request *req);
static int jz_sd_receive_data_dma(const int drive, struct sd_request *req);
#endif

static int jz_sd_receive_data(const int drive, struct sd_request *req)
{
    unsigned int nob = req->nob;
    unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2;    /* length in word */
    unsigned char *buf = req->buffer;
    unsigned int *wbuf = (unsigned int *) buf;
    unsigned int waligned = (((unsigned int) buf & 0x3) == 0);    /* word aligned ? */
    unsigned int stat, data, cnt;

#if SD_DMA_ENABLE
    /* Use DMA if we can */
    if ((int)req->buffer & 0x3 == 0)
        return jz_sd_receive_data_dma(drive, req);
#endif

    for (; nob >= 1; nob--)
    {
        long deadline = current_tick + (HZ * 65);

        do {
            stat = REG_MSC_STAT(MSC_CHN(drive));

            if (stat & MSC_STAT_TIME_OUT_READ)
                return SD_ERROR_TIMEOUT;
            else if (stat & MSC_STAT_CRC_READ_ERROR)
                return SD_ERROR_CRC;
            else if ((stat & MSC_STAT_DATA_FIFO_AFULL) ||
                     !(stat & MSC_STAT_DATA_FIFO_EMPTY))
                /* Ready to read data */
                break;

            yield();
        } while (TIME_BEFORE(current_tick, deadline));

        /* Read data from RXFIFO. It could be FULL or PARTIAL FULL */
        DEBUG("Receive Data = %d", wblocklen);
        cnt = wblocklen;
        while (cnt)
        {
            if (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_DATA_FIFO_EMPTY)
            {
                if (TIME_AFTER(current_tick, deadline))
                    return SD_ERROR_TIMEOUT;
                continue;
            }

            data = REG_MSC_RXFIFO(MSC_CHN(drive));
            if (waligned)
                *wbuf++ = data;
            else
            {
                *buf++ = (unsigned char) (data >> 0);
                *buf++ = (unsigned char) (data >> 8);
                *buf++ = (unsigned char) (data >> 16);
                *buf++ = (unsigned char) (data >> 24);
            }
            cnt--;
        }
    }

    return SD_NO_ERROR;
}

static int jz_sd_transmit_data(const int drive, struct sd_request *req)
{
    unsigned int nob = req->nob;
    unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2;    /* length in word */
    unsigned char *buf = req->buffer;
    unsigned int *wbuf = (unsigned int *) buf;
    unsigned int waligned = (((unsigned int) buf & 0x3) == 0);    /* word aligned ? */
    unsigned int stat, data, cnt;

#if SD_DMA_ENABLE
    /* Use DMA if we can */
    if ((int)req->buffer & 0x3 == 0)
        return jz_sd_transmit_data_dma(drive, req);
#endif

    for (; nob >= 1; nob--)
    {
        long deadline = current_tick + (HZ * 65);

        do {
            stat = REG_MSC_STAT(MSC_CHN(drive));

            if (stat &
                (MSC_STAT_CRC_WRITE_ERROR |
                 MSC_STAT_CRC_WRITE_ERROR_NOSTS))
                return SD_ERROR_CRC;
            else if (!(stat & MSC_STAT_DATA_FIFO_FULL))
                /* Ready to write data */
                break;

            yield();
        } while (TIME_BEFORE(current_tick, deadline));

        /* Write data to TXFIFO */
        cnt = wblocklen;
        while (cnt)
        {
            if (REG_MSC_STAT(MSC_CHN(drive)) & MSC_STAT_DATA_FIFO_FULL)
            {
                if (TIME_AFTER(current_tick, deadline))
                    return SD_ERROR_TIMEOUT;
                continue;
            }

            if (waligned)
                REG_MSC_TXFIFO(MSC_CHN(drive)) = *wbuf++;
            else
            {
                data = *buf++;
                data |= *buf++ << 8;
                data |= *buf++ << 16;
                data |= *buf++ << 24;
                REG_MSC_TXFIFO(MSC_CHN(drive)) = data;
            }

            cnt--;
        }
    }

    return SD_NO_ERROR;
}

#if SD_DMA_ENABLE
static int jz_sd_receive_data_dma(const int drive, struct sd_request *req)
{
    /* setup dma channel */
    REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = 0;
    REG_DMAC_DSAR(DMA_SD_RX_CHANNEL(drive)) = PHYSADDR(MSC_RXFIFO(MSC_CHN(drive))); /* DMA source addr */
    REG_DMAC_DTAR(DMA_SD_RX_CHANNEL(drive)) = PHYSADDR((unsigned long)req->buffer); /* DMA dest addr */
    REG_DMAC_DTCR(DMA_SD_RX_CHANNEL(drive)) = (req->cnt + 3) >> 2;                  /* DMA transfer count */
    REG_DMAC_DRSR(DMA_SD_RX_CHANNEL(drive)) = (drive == SD_SLOT_1) ? DMAC_DRSR_RS_MSC2IN : DMAC_DRSR_RS_MSC1IN;    /* DMA request type */

    REG_DMAC_DCMD(DMA_SD_RX_CHANNEL(drive)) =
#if SD_DMA_INTERRUPT
        DMAC_DCMD_TIE | /* Enable DMA interrupt */
#endif
        DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
        DMAC_DCMD_DS_32BIT;
    REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;

    /* wait for dma completion */
#if SD_DMA_INTERRUPT
    semaphore_wait(&sd_wakeup[drive], TIMEOUT_BLOCK);
#else
    while (REG_DMAC_DTCR(DMA_SD_RX_CHANNEL(drive)))
           yield();
#endif

    /* clear status and disable channel */
    REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(drive)) = 0;

    /* flush dcache */
    dma_cache_wback_inv((unsigned long) req->buffer, req->cnt);

    return SD_NO_ERROR;
}

static int jz_sd_transmit_data_dma(const int drive, struct sd_request *req)
{
    /* flush dcache */
    dma_cache_wback_inv((unsigned long) req->buffer, req->cnt);

    /* setup dma channel */
    REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = 0;
    REG_DMAC_DSAR(DMA_SD_TX_CHANNEL(drive)) = PHYSADDR((unsigned long) req->buffer); /* DMA source addr */
    REG_DMAC_DTAR(DMA_SD_TX_CHANNEL(drive)) = PHYSADDR(MSC_TXFIFO(MSC_CHN(drive)));  /* DMA dest addr */
    REG_DMAC_DTCR(DMA_SD_TX_CHANNEL(drive)) = (req->cnt + 3) >> 2;                       /* DMA transfer count */
    REG_DMAC_DRSR(DMA_SD_TX_CHANNEL(drive)) = (drive == SD_SLOT_1) ? DMAC_DRSR_RS_MSC2OUT : DMAC_DRSR_RS_MSC1OUT;    /* DMA request type */

    REG_DMAC_DCMD(DMA_SD_TX_CHANNEL(drive)) =
#if SD_DMA_INTERRUPT
        DMAC_DCMD_TIE | /* Enable DMA interrupt */
#endif
        DMAC_DCMD_SAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
        DMAC_DCMD_DS_32BIT;
    REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;

    /* wait for dma completion */
#if SD_DMA_INTERRUPT
    semaphore_wait(&sd_wakeup[drive], TIMEOUT_BLOCK);
#else
    while (REG_DMAC_DTCR(DMA_SD_TX_CHANNEL(drive)))
           yield();
#endif

    /* clear status and disable channel */
    REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(drive)) = 0;

    return SD_NO_ERROR;
}

#if SD_DMA_INTERRUPT
void DMA_CALLBACK(DMA_SD_RX_CHANNEL0)(void)
{
    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_AR)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_AR;
        panicf("SD RX DMA address error");
    }

    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_HLT)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_HLT;
        panicf("SD RX DMA halt");
    }

    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_TT)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_TT;
        //sd_rx_dma_callback();
        semaphore_release(&sd_wakeup[SD_SLOT_1]);
    }
}

void DMA_CALLBACK(DMA_SD_RX_CHANNEL1)(void)
{
    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_AR)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_AR;
        panicf("SD RX DMA address error");
    }

    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_HLT)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_HLT;
        panicf("SD RX DMA halt");
    }

    if (REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_TT)
    {
        REG_DMAC_DCCSR(DMA_SD_RX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_TT;
        //sd_rx_dma_callback();
        semaphore_release(&sd_wakeup[SD_SLOT_2]);
    }
}

void DMA_CALLBACK(DMA_SD_TX_CHANNEL0)(void)
{
    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_AR)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_AR;
        panicf("SD TX DMA address error");
    }

    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_HLT)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_HLT;
        panicf("SD TX DMA halt");
    }

    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) & DMAC_DCCSR_TT)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_1)) &= ~DMAC_DCCSR_TT;
        //sd_tx_dma_callback();
        semaphore_release(&sd_wakeup[SD_SLOT_1]);
    }
}

void DMA_CALLBACK(DMA_SD_TX_CHANNEL1)(void)
{
    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_AR)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_AR;
        panicf("SD TX DMA address error");
    }

    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_HLT)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_HLT;
        panicf("SD TX DMA halt");
    }

    if (REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) & DMAC_DCCSR_TT)
    {
        REG_DMAC_DCCSR(DMA_SD_TX_CHANNEL(SD_SLOT_2)) &= ~DMAC_DCCSR_TT;
        //sd_tx_dma_callback();
	semaphore_release(&sd_wakeup[SD_SLOT_2]);
    }
}
#endif                /* SD_DMA_INTERRUPT */
#endif                /* SD_DMA_ENABLE */

#ifndef HAVE_ADJUSTABLE_CPU_FREQ
#define cpu_frequency __cpm_get_pllout2()
#endif

static inline unsigned int jz_sd_calc_clkrt(const int drive, unsigned int rate)
{
    unsigned int clkrt = 0;
    unsigned int clk_src = cpu_frequency / __cpm_get_mscdiv(); /* MSC_CLK */

    if (!sd2_0[drive] && rate > SD_CLOCK_FAST)
        rate = SD_CLOCK_FAST;

    while (rate < clk_src)
    {
        clkrt++;
        clk_src >>= 1;
    }
    return clkrt;
}

/* Set the MMC clock frequency */
static void jz_sd_set_clock(const int drive, unsigned int rate)
{
    int clkrt;

    clkrt = jz_sd_calc_clkrt(drive, rate);
    REG_MSC_CLKRT(MSC_CHN(drive)) = clkrt;

    DEBUG("set clock to %u Hz clkrt=%d", rate, clkrt);
}

/********************************************************************************************************************
** Name:      int jz_sd_exec_cmd()
** Function:  send command to the card, and get a response
** Input:     struct sd_request *req: SD request
** Output:    0:  right        >0:  error code
********************************************************************************************************************/
static int jz_sd_exec_cmd(const int drive, struct sd_request *request)
{
    unsigned int cmdat = 0, events = 0;
    int retval;
#if !SD_INTERRUPT
    long deadline = current_tick + (HZ * 5);
#endif

    /* Indicate we have no result yet */
    request->result = SD_NO_RESPONSE;

    if (request->cmd == SD_CIM_RESET) {
        /* On reset, 1-bit bus width */
        use_4bit[drive] = 0;

        /* On reset, stop SD clock */
        jz_sd_stop_clock(drive);

        /* Reset MMC/SD controller */
        __msc_reset(MSC_CHN(drive));

        /* Drop SD clock down to lowest speed */
        jz_sd_set_clock(drive, MMC_CLOCK_SLOW);

#if SD_AUTO_CLOCK
	/* Re-enable clocks */
        REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_START;
        REG_MSC_LPM(drive) = MSC_SET_LPM;
#endif
    }

    /* mask all interrupts and clear status */
    SD_IRQ_MASK(MSC_CHN(drive));

    /* open interrupt */
    REG_MSC_IMASK(MSC_CHN(drive)) = ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_DATA_TRAN_DONE | MSC_IMASK_PRG_DONE);

    /* Set command type and events */
    switch (request->cmd)
    {
        /* SD core extra command */
        case SD_CIM_RESET:
            cmdat |= MSC_CMDAT_INIT; /* Initialization sequence sent prior to command */
            break;
            /* bc - broadcast - no response */
        case SD_GO_IDLE_STATE:
        case SD_SET_DSR:
            break;

            /* bcr - broadcast with response */
        case SD_APP_OP_COND:
        case SD_ALL_SEND_CID:
        case SD_GO_IRQ_STATE:
            break;

            /* adtc - addressed with data transfer */
        case SD_SEND_SCR:
            /* SD card returns SCR register as data.
               SD core expect it in the response buffer,
               after normal response. */
            request->buffer =
              (unsigned char *) ((unsigned int) request->response + 5);
            request->block_len = 8;
            request->nob = 1;

        case SD_READ_DAT_UNTIL_STOP:
        case SD_READ_SINGLE_BLOCK:
        case SD_READ_MULTIPLE_BLOCK:
#if SD_DMA_ENABLE
            cmdat |=
                MSC_CMDAT_DATA_EN | MSC_CMDAT_READ | MSC_CMDAT_DMA_EN;
#else
            cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
            events = SD_EVENT_RX_DATA_DONE;
            break;

        case SD_SWITCH_FUNC:
            if (request->arg == 0x2)
            {
                DEBUG("Use 4-bit bus width");
                use_4bit[drive] = 1;
            }
            else
            {
                DEBUG("Use 1-bit bus width");
                use_4bit[drive] = 0;
            }
            if (num_6[drive] < 2)
            {
#if SD_DMA_ENABLE
                cmdat |=
                    MSC_CMDAT_DATA_EN | MSC_CMDAT_READ |
                    MSC_CMDAT_DMA_EN;
#else
                cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
                events = SD_EVENT_RX_DATA_DONE;
            }
            break;

        case SD_WRITE_DAT_UNTIL_STOP:
        case SD_WRITE_BLOCK:
        case SD_WRITE_MULTIPLE_BLOCK:
        case SD_PROGRAM_CID:
        case SD_PROGRAM_CSD:
//        case SD_LOCK_UNLOCK:
#if SD_DMA_ENABLE
            cmdat |=
                MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE | MSC_CMDAT_DMA_EN;
#else
            cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE;
#endif
            events = SD_EVENT_TX_DATA_DONE | SD_EVENT_PROG_DONE;
            break;

        case SD_STOP_TRANSMISSION:
            events = SD_EVENT_PROG_DONE;
            break;

        /* ac - no data transfer */
        default:
            break;
    }

    /* Set response type */
    switch (request->rtype)
    {
        case RESPONSE_NONE:
            break;
        case RESPONSE_R1B:
            cmdat |= MSC_CMDAT_BUSY;
            /* FALLTHRU */
        case RESPONSE_R1:
        case RESPONSE_R7:
            cmdat |= MSC_CMDAT_RESPONSE_R1;
            break;
        case RESPONSE_R2_CID:
        case RESPONSE_R2_CSD:
            cmdat |= MSC_CMDAT_RESPONSE_R2;
            break;
        case RESPONSE_R3:
            cmdat |= MSC_CMDAT_RESPONSE_R3;
            break;
        case RESPONSE_R4:
            cmdat |= MSC_CMDAT_RESPONSE_R4;
            break;
        case RESPONSE_R5:
            cmdat |= MSC_CMDAT_RESPONSE_R5;
            break;
        case RESPONSE_R6:
            cmdat |= MSC_CMDAT_RESPONSE_R6;
            break;
        default:
            break;
    }

    /* use 4-bit bus width when possible */
    if (use_4bit[drive])
        cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;

    /* Set command index */
    if (request->cmd == SD_CIM_RESET)
        REG_MSC_CMD(MSC_CHN(drive)) = SD_GO_IDLE_STATE;
    else
        REG_MSC_CMD(MSC_CHN(drive)) = request->cmd;

    /* Set argument */
    REG_MSC_ARG(MSC_CHN(drive)) = request->arg;

    /* Set block length and nob */
    REG_MSC_BLKLEN(MSC_CHN(drive)) = request->block_len;
    REG_MSC_NOB(MSC_CHN(drive)) = request->nob;

    /* Set command */
    REG_MSC_CMDAT(MSC_CHN(drive)) = cmdat;

    DEBUG("Send cmd %d cmdat: %x arg: %x resp %d", request->cmd,
          cmdat, request->arg, request->rtype);

    /* Start SD clock and send command to card */
    jz_sd_start_clock(drive);

    /* Wait for command completion */
#if SD_INTERRUPT
    semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
    while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_END_CMD_RES))
    {
        if (TIME_AFTER(current_tick, deadline))
            return SD_ERROR_TIMEOUT;
        yield();
    }
    REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_END_CMD_RES;    /* clear flag */
#endif

    /* Check for status */
    retval = jz_sd_check_status(drive, request);
    if (retval)
        return retval;

    /* Complete command with no response */
    if (request->rtype == RESPONSE_NONE)
        return SD_NO_ERROR;

    /* Get response */
    jz_sd_get_response(drive, request);

    /* Start data operation */
    if (events & (SD_EVENT_RX_DATA_DONE | SD_EVENT_TX_DATA_DONE))
    {
        if (events & SD_EVENT_RX_DATA_DONE)
        {
            retval = jz_sd_receive_data(drive, request);
        }
        if (retval)
            return retval;

        if (events & SD_EVENT_TX_DATA_DONE)
        {
            retval = jz_sd_transmit_data(drive, request);
        }
        if (retval)
            return retval;

#if SD_INTERRUPT
        semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
        /* Wait for Data Done */
        while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_DATA_TRAN_DONE))
            yield();
        REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_DATA_TRAN_DONE;    /* clear status */
#endif
    }

    /* Wait for Prog Done event */
    if (events & SD_EVENT_PROG_DONE)
    {
#if SD_INTERRUPT
        semaphore_wait(&sd_wakeup[drive], HZ * 5);
#else
        while (!(REG_MSC_IREG(MSC_CHN(drive)) & MSC_IREG_PRG_DONE))
            yield();
        REG_MSC_IREG(MSC_CHN(drive)) = MSC_IREG_PRG_DONE;    /* clear status */
#endif
    }

    /* Command completed */
#if !SD_AUTO_CLOCK
    jz_sd_stop_clock(drive); /* stop SD clock */
#endif

    return SD_NO_ERROR;    /* return successfully */
}

/*******************************************************************************************************************
** Name:      int sd_chkcard()
** Function:  check whether card is insert entirely
** Input:     NULL
** Output:    1: insert entirely    0: not insert entirely
********************************************************************************************************************/
static int jz_sd_chkcard(const int drive)
{
    return (__gpio_get_pin((drive == SD_SLOT_1) ? PIN_SD1_CD : PIN_SD2_CD) == 0 ? 1 : 0);
}

/* MSC interrupt handlers */
#if SD_INTERRUPT
void MSC2(void)  /* SD_SLOT_1 */
{
    logf("MSC2 interrupt");

    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_END_CMD_RES) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_END_CMD_RES;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_1]);
    }
    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_PRG_DONE) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_PRG_DONE;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_1]);
    }
    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) & MSC_IREG_DATA_TRAN_DONE) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_1)) = MSC_IREG_DATA_TRAN_DONE;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_1]);
    }
}

/* MSC interrupt handlers */
void MSC1(void) /* SD_SLOT_2 */
{
    logf("MSC1 interrupt");
    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_END_CMD_RES) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_END_CMD_RES;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_2]);
    }
    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_PRG_DONE) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_PRG_DONE;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_2]);
    }
    if (REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) & MSC_IREG_DATA_TRAN_DONE) {
        REG_MSC_IREG(MSC_CHN(SD_SLOT_2)) = MSC_IREG_DATA_TRAN_DONE;    /* clear flag */
        semaphore_release(&sd_wakeup[SD_SLOT_2]);
    }
}
#endif

#ifdef HAVE_HOTSWAP
static void sd_gpio_setup_irq(const int drive, bool inserted)
{
    int pin = (drive == SD_SLOT_1) ? PIN_SD1_CD : PIN_SD2_CD;
    int irq = (drive == SD_SLOT_1) ? IRQ_SD1_CD : IRQ_SD2_CD;
    if(inserted)
        __gpio_as_irq_rise_edge(pin);
    else
        __gpio_as_irq_fall_edge(pin);
    system_enable_irq(irq);
}
#endif

/*******************************************************************************************************************
** Name:      void sd_hardware_init()
** Function:  initialize the hardware condiction that access sd card
** Input:     NULL
** Output:    NULL
********************************************************************************************************************/
static void jz_sd_hardware_init(const int drive)
{
    if (drive == SD_SLOT_1)
        __cpm_start_msc2();   /* enable mmc2 clock */
    else
        __cpm_start_msc1();   /* enable mmc1 clock */
#ifdef HAVE_HOTSWAP
    sd_gpio_setup_irq(drive, jz_sd_chkcard(drive));
#endif
    __msc_reset(MSC_CHN(drive));  /* reset mmc/sd controller */
    SD_IRQ_MASK(MSC_CHN(drive));  /* mask all IRQs */
#if SD_AUTO_CLOCK
    REG_MSC_STRPCL(MSC_CHN(drive)) = MSC_STRPCL_CLOCK_CONTROL_START; /* Enable clocks */
    REG_MSC_LPM(drive) = MSC_SET_LPM; /* enable auto clock stop */
#else
    jz_sd_stop_clock(drive); /* stop SD clock */
#endif
}

static void sd_send_cmd(const int drive, struct sd_request *request, int cmd, unsigned int arg,
                         unsigned short nob, unsigned short block_len,
                         enum sd_rsp_t rtype, unsigned char* buffer)
{
    int retval;

    request->cmd = cmd;
    request->arg = arg;
    request->rtype = rtype;
    request->nob = nob;
    request->block_len = block_len;
    request->buffer = buffer;
    request->cnt = nob * block_len;

    retval = jz_sd_exec_cmd(drive, request);
    if (retval)
            request->result = retval;
}

static void sd_simple_cmd(const int drive, struct sd_request *request, int cmd, unsigned int arg,
                           enum sd_rsp_t rtype)
{
    sd_send_cmd(drive, request, cmd, arg, 0, 0, rtype, NULL);
}

static int sd_exec_acmd(const int drive, struct sd_request *request, int cmd, unsigned int arg)
{
    struct sd_response_r1 r1;
    int retval;

    sd_simple_cmd(drive, request, SD_APP_CMD, card[drive].rca, RESPONSE_R1);
    retval = sd_unpack_r1(request, &r1);

    if (!retval)
    {
        sd_simple_cmd(drive, request, cmd, arg, RESPONSE_R1);
        retval = sd_unpack_r1(request, &r1);
    }

    return retval;
}

#define SD_INIT_DOING   0
#define SD_INIT_PASSED  1
#define SD_INIT_FAILED  2
static int sd_init_card_state(const int drive, struct sd_request *request)
{
    struct sd_response_r1 r1;
    struct sd_response_r3 r3;
    int retval, i, ocr = 0x40300000;

    switch (request->cmd)
    {
        case SD_GO_IDLE_STATE: /* No response to parse */
            sd_simple_cmd(drive, request, SD_SEND_IF_COND, 0x1AA, RESPONSE_R1);
            break;

        case SD_SEND_IF_COND:
            retval = sd_unpack_r1(request, &r1);
            sd_simple_cmd(drive, request, SD_APP_CMD,  0, RESPONSE_R1);
            break;

        case SD_APP_CMD:
            if (sd_unpack_r1(request, &r1))
                return SD_INIT_FAILED;
            sd_simple_cmd(drive, request, SD_APP_OP_COND, ocr, RESPONSE_R3);
            break;

        case SD_APP_OP_COND:
            retval = sd_unpack_r3(request, &r3);
            if (retval)
                return SD_INIT_FAILED;

            DEBUG("sd_init_card_state: read ocr value = 0x%08x", r3.ocr);
            card[drive].ocr = r3.ocr;

            if(!(r3.ocr & SD_CARD_BUSY || ocr == 0))
            {
                sleep(HZ / 100);
                sd_simple_cmd(drive, request, SD_APP_CMD, 0, RESPONSE_R1);
            }
            else
            {
                /* Set the data bus width to 4 bits */
                use_4bit[drive] = 1;
                sd_simple_cmd(drive, request, SD_ALL_SEND_CID, 0, RESPONSE_R2_CID);
            }
            break;

        case SD_ALL_SEND_CID:
            if (request->result)
                return SD_INIT_FAILED;

            for(i=0; i<4; i++)
                card[drive].cid[i] = ((request->response[1+i*4]<<24) | (request->response[2+i*4]<<16) |
                               (request->response[3+i*4]<< 8) | request->response[4+i*4]);

            logf("CID: %08lx%08lx%08lx%08lx", card[drive].cid[0], card[drive].cid[1], card[drive].cid[2], card[drive].cid[3]);
            sd_simple_cmd(drive, request, SD_SEND_RELATIVE_ADDR, 0, RESPONSE_R6);
            break;

        case SD_SEND_RELATIVE_ADDR:
            retval = sd_unpack_r6(request, &r1, &card[drive].rca);
            card[drive].rca = card[drive].rca << 16;
            DEBUG("sd_init_card_state: Get RCA from SD: 0x%04lx Status: %x", card[drive].rca, r1.status);
            if (retval)
            {
                DEBUG("sd_init_card_state: unable to SET_RELATIVE_ADDR error=%d",
                      retval);
                return SD_INIT_FAILED;
            }

            sd_simple_cmd(drive, request, SD_SEND_CSD, card[drive].rca, RESPONSE_R2_CSD);
            break;

        case SD_SEND_CSD:
            if (request->result)
                return SD_INIT_FAILED;
            for(i=0; i<4; i++)
                card[drive].csd[i] = ((request->response[1+i*4]<<24) | (request->response[2+i*4]<<16) |
                               (request->response[3+i*4]<< 8) | request->response[4+i*4]);

            sd_parse_csd(&card[drive]);
            sd2_0[drive] = (card_extract_bits(card[drive].csd, 127, 2) == 1);

            logf("CSD: %08lx%08lx%08lx%08lx", card[drive].csd[0], card[drive].csd[1], card[drive].csd[2], card[drive].csd[3]);
            DEBUG("SD card is ready");
            jz_sd_set_clock(drive, SD_CLOCK_FAST);
            return SD_INIT_PASSED;

        default:
            DEBUG("sd_init_card_state: error!  Illegal last cmd %d", request->cmd);
            return SD_INIT_FAILED;
    }

    return SD_INIT_DOING;
}

static int sd_switch(const int drive, struct sd_request *request, int mode, int group,
              unsigned char value, unsigned char * resp)
{
    unsigned int arg;

    mode = !!mode;
    value &= 0xF;
    arg = (mode << 31 | 0x00FFFFFF);
    arg &= ~(0xF << (group * 4));
    arg |= value << (group * 4);
    sd_send_cmd(drive, request, SD_SWITCH_FUNC, arg, 1, 64, RESPONSE_R1, resp);

    return 0;
}

/*
 * Fetches and decodes switch information
 */
static int sd_read_switch(const int drive, struct sd_request *request)
{
    unsigned int status[64 / 4];

    memset((unsigned char *)status, 0, 64);
    sd_switch(drive, request, 0, 0, 1, (unsigned char*) status);

    if (((unsigned char *)status)[13] & 0x02)
        return 0;
    else
        return 1;
}

/*
 * Test if the card supports high-speed mode and, if so, switch to it.
 */
static int sd_switch_hs(const int drive, struct sd_request *request)
{
    unsigned int status[64 / 4];

    sd_switch(drive, request, 1, 0, 1, (unsigned char*) status);
    return 0;
}

static int sd_select_card(const int drive)
{
    struct sd_request request;
    struct sd_response_r1 r1;
    int retval;

    sd_simple_cmd(drive, &request, SD_SELECT_CARD, card[drive].rca,
               RESPONSE_R1B);
    retval = sd_unpack_r1(&request, &r1);
    if (retval)
        return retval;

    if (sd2_0[drive])
    {
        retval = sd_read_switch(drive, &request);
        if (!retval)
        {
            sd_switch_hs(drive, &request);
            jz_sd_set_clock(drive, SD_CLOCK_HIGH);
        }
    }
    num_6[drive] = 3;
    retval = sd_exec_acmd(drive, &request, SD_SET_BUS_WIDTH, 2);
    if (retval)
        return retval;
    retval = sd_exec_acmd(drive, &request, SD_SET_CLR_CARD_DETECT, 0);
    if (retval)
        return retval;

    card[drive].initialized = 1;

    return 0;
}

static int __sd_init_device(const int drive)
{
    int retval = 0;
    long deadline;
    struct sd_request init_req;

    /* Initialise card data as blank */
    memset(&card[drive], 0, sizeof(tCardInfo));

    sd2_0[drive] = 0;
    num_6[drive] = 0;
    use_4bit[drive] = 0;
    active[drive] = 0;

    /* reset mmc/sd controller */
    jz_sd_hardware_init(drive);

    sd_simple_cmd(drive, &init_req, SD_CIM_RESET,     0,     RESPONSE_NONE);
    sd_simple_cmd(drive, &init_req, SD_GO_IDLE_STATE, 0,     RESPONSE_NONE);

    sleep(HZ/2); /* Give the card/controller some rest */

    deadline = current_tick + HZ;
    do {
       retval = sd_init_card_state(drive, &init_req);
    } while (TIME_BEFORE(current_tick, deadline) && (retval == SD_INIT_DOING));

    retval = (retval == SD_INIT_PASSED ? sd_select_card(drive) : -1);

    if (drive == SD_SLOT_1)
        __cpm_stop_msc2(); /* disable SD1 clock */
    else
        __cpm_stop_msc1(); /* disable SD2 clock */

    return retval;
}

int sd_init(void)
{
    static bool inited = false;

    sd_init_gpio();     /* init GPIO */

#if SD_DMA_ENABLE
    __dmac_channel_enable_clk(DMA_SD_RX_CHANNEL(SD_SLOT_1));
    __dmac_channel_enable_clk(DMA_SD_RX_CHANNEL(SD_SLOT_2));
    __dmac_channel_enable_clk(DMA_SD_TX_CHANNEL(SD_SLOT_1));
    __dmac_channel_enable_clk(DMA_SD_TX_CHANNEL(SD_SLOT_2));
#endif

    if(!inited)
    {

#if SD_DMA_INTERRUPT || SD_INTERRUPT
        semaphore_init(&sd_wakeup[SD_SLOT_1], 1, 0);
        semaphore_init(&sd_wakeup[SD_SLOT_2], 1, 0);
#endif
        mutex_init(&sd_mtx[SD_SLOT_1]);
        mutex_init(&sd_mtx[SD_SLOT_2]);

#if SD_INTERRUPT
        system_enable_irq(IRQ_MSC2);
        system_enable_irq(IRQ_MSC1);
#endif

#if SD_DMA_ENABLE && SD_DMA_INTERRUPT
        system_enable_irq(DMA_IRQ(DMA_SD_RX_CHANNEL(SD_SLOT_1)));
        system_enable_irq(DMA_IRQ(DMA_SD_RX_CHANNEL(SD_SLOT_2)));
        system_enable_irq(DMA_IRQ(DMA_SD_TX_CHANNEL(SD_SLOT_1)));
        system_enable_irq(DMA_IRQ(DMA_SD_TX_CHANNEL(SD_SLOT_2)));
#endif

        inited = true;
    }

    for (int drive = 0; drive < NUM_DRIVES; drive++) {
        mutex_lock(&sd_mtx[drive]);
        __sd_init_device(drive);
        mutex_unlock(&sd_mtx[drive]);
    }

    return 0;
}

static inline bool card_detect_target(const int drive)
{
    return (jz_sd_chkcard(drive) == 1);
}

tCardInfo* card_get_info_target(const int drive)
{
    return &card[drive];
}

static inline void sd_start_transfer(const int drive)
{
    mutex_lock(&sd_mtx[drive]);
    if (drive == SD_SLOT_1)
        __cpm_start_msc2();
    else
        __cpm_start_msc1();

    active[drive] = 1;
    led(active[SD_SLOT_1] || active[SD_SLOT_2]);
}

static inline void sd_stop_transfer(const int drive)
{
    active[drive] = 0;
    led(active[SD_SLOT_1] || active[SD_SLOT_2]);

    if (drive == SD_SLOT_1)
        __cpm_stop_msc2();
    else
        __cpm_stop_msc1();
    mutex_unlock(&sd_mtx[drive]);
}

int sd_transfer_sectors(IF_MD(const int drive,) unsigned long start, int count, void* buf, bool write)
{
    struct sd_request request;
    struct sd_response_r1 r1;
    int retval = -1;
#ifndef HAVE_MULTIDRIVE
    const int drive = 0;
#endif

    sd_start_transfer(drive);

    if (!card_detect_target(drive) || count < 1 || (start + count) > card[drive].numblocks)
        goto err;

    if(card[drive].initialized == 0 && !__sd_init_device(drive))
        goto err;

    sd_simple_cmd(drive, &request, SD_SEND_STATUS, card[drive].rca, RESPONSE_R1);
    if ((retval = sd_unpack_r1(&request, &r1)))
        goto err;

    sd_simple_cmd(drive, &request, SD_SET_BLOCKLEN, SD_BLOCK_SIZE, RESPONSE_R1);
    if ((retval = sd_unpack_r1(&request, &r1)))
        goto err;

    sd_send_cmd(drive, &request,
                (count > 1) ?
                (write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK) :
                (write ? SD_WRITE_BLOCK : SD_READ_SINGLE_BLOCK),
                sd2_0[drive] ? start : (start * SD_BLOCK_SIZE),
                count, SD_BLOCK_SIZE, RESPONSE_R1, buf);
    if ((retval = sd_unpack_r1(&request, &r1)))
        goto err;

    if (count > 1)
    {
        sd_simple_cmd(drive, &request, SD_STOP_TRANSMISSION, 0, RESPONSE_R1B);
        retval = sd_unpack_r1(&request, &r1);
        if (!write && retval == SD_ERROR_OUT_OF_RANGE)
            retval = 0;
    }

err:
    last_disk_activity = current_tick;
    sd_stop_transfer(drive);

    return retval;
}

int sd_read_sectors(IF_MD(int drive,) unsigned long start, int count, void* buf)
{
  return sd_transfer_sectors(IF_MD(drive,) start, count, buf, false);
}

int sd_write_sectors(IF_MD(int drive,) unsigned long start, int count, const void* buf)
{
  return sd_transfer_sectors(IF_MD(drive,) start, count, (void*)buf, true);
}

long sd_last_disk_activity(void)
{
    return last_disk_activity;
}

int sd_spinup_time(void)
{
    return 0;
}

void sd_enable(bool on)
{
    (void)on;
}

bool sd_disk_is_active(void)
{
    return false;
}

int sd_soft_reset(void)
{
    return 0;
}

#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MD_NONVOID(const int drive))
{
#ifdef HAVE_MULTIDRIVE
     (void)drive;
#endif
    return true;
}

static int sd_oneshot_callback(struct timeout *tmo)
{
    int slot = (int) tmo->data;
    int state = card_detect_target(slot);

    /* This is called only if the state was stable for 300ms - check state
     * and post appropriate event. */
    queue_broadcast(state ? SYS_HOTSWAP_INSERTED : SYS_HOTSWAP_EXTRACTED,
                    sd_drive_nr + slot);

    sd_gpio_setup_irq(slot, state);

    return 0;
}

/* called on insertion/removal interrupt */
void GPIO_SD1_CD(void)
{
    static struct timeout sd1_oneshot;
    timeout_register(&sd1_oneshot, sd_oneshot_callback, (3*HZ/10), SD_SLOT_1);
}

void GPIO_SD2_CD(void)
{
    static struct timeout sd2_oneshot;
    timeout_register(&sd2_oneshot, sd_oneshot_callback, (3*HZ/10), SD_SLOT_2);
}

bool sd_present(IF_MD_NONVOID(const int drive))
{
#ifndef HAVE_MULTIDRIVE
    const int drive = 0;
#endif
    return card_detect_target(drive);
}
#endif

#ifdef CONFIG_STORAGE_MULTI
int sd_num_drives(int first_drive)
{
    sd_drive_nr = first_drive;
    return NUM_DRIVES;
}
#endif /* CONFIG_STORAGE_MULTI */

int sd_event(long id, intptr_t data)
{
    int rc = 0;

    switch (id)
    {
#ifdef HAVE_HOTSWAP
    case SYS_HOTSWAP_INSERTED:
    case SYS_HOTSWAP_EXTRACTED:
        /* Force card init for new card, re-init for re-inserted one or
         * clear if the last attempt to init failed with an error. */
        mutex_lock(&sd_mtx[data]); /* lock-out card activity */
        card[data].initialized = 0;
	if (id == SYS_HOTSWAP_INSERTED)
            __sd_init_device(data);
        mutex_unlock(&sd_mtx[data]);
        break;
#endif /* HAVE_HOTSWAP */
    default:
        rc = storage_event_default_handler(id, data, last_disk_activity,
                                           STORAGE_SD);
        break;
    }

    return rc;
}