1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "lcd.h"
#include "system.h"
#include "kernel.h"
#include "lcd-x1000.h"
#include "dma-x1000.h"
#include "irq-x1000.h"
#include "x1000/lcd.h"
#include "x1000/cpm.h"
#include <stdint.h>
#include <string.h>
#define LCD_DMA_CMD_SOFINT (1 << 31)
#define LCD_DMA_CMD_EOFINT (1 << 30)
#define LCD_DMA_CMD_COMMAND (1 << 29)
#define LCD_DMA_CMD_FRM_EN (1 << 26)
#define LCD_DMA_CNT_BPP_15BIT ((4 << 27)|(1<<30))
#define LCD_DMA_CNT_BPP_16BIT (4 << 27)
#define LCD_DMA_CNT_BPP_18BIT_OR_24BIT (5 << 27)
struct lcd_dma_desc {
uint32_t da; /* Next descriptor address */
uint32_t sa; /* Source buffer address */
uint32_t fid; /* Frame ID */
uint32_t cmd; /* Command bits */
uint32_t osz; /* OFFSIZE register */
uint32_t pw; /* page width */
uint32_t cnt; /* CNUM / CPOS, depending on LCD_DMA_CMD_COMMAND bit */
uint32_t fsz; /* Frame size (set to 0 for commands) */
} __attribute__((aligned(32)));
/* We need two descriptors, one for framebuffer write command and one for
* frame data. Even if no command is needed we need a dummy command descriptor
* with cnt=0, or the hardware will refuse to transfer the frame data.
*
* First descriptor always has to be a command (lcd_dma_desc[0] here) or
* the hardware will give up.
*/
static struct lcd_dma_desc lcd_dma_desc[2];
/* Shadow copy of main framebuffer, needed to avoid tearing */
static fb_data shadowfb[LCD_HEIGHT*LCD_WIDTH] __attribute__((aligned(64)));
/* Signals DMA copy to shadow FB is done */
static volatile int fbcopy_done;
#if defined(HAVE_LCD_SLEEP) || defined(LCD_X1000_FASTSLEEP)
/* True if we're in sleep mode */
static bool lcd_sleeping = false;
#endif
static bool lcd_on = false;
/* Check if running with interrupts disabled (eg: panic screen) */
#define lcd_panic_mode \
UNLIKELY((read_c0_status() & 1) == 0)
typedef enum {
LCD_SEND0, LCD_SEND1,
WAIT_FRAME, SLEEP_FRAME,
WAIT_EOF, SLEEP_EOF,
WAIT_QD,
WAIT_FBCPF, WAIT_FBCPP
} Lcd_ID;
// TODO: This may need a yield?
static void __attribute__ ((noinline)) lcd_wait(Lcd_ID id)
{
uint32_t i, done = 0;
for(i=0; i<LCD_WAIT_STEPS; i++) {
if (done) break;
switch (id) {
case LCD_SEND0:
case LCD_SEND1:
case WAIT_FRAME:
case SLEEP_FRAME: done = !jz_readf(LCD_MSTATE, BUSY); break;
case WAIT_EOF:
case SLEEP_EOF: done = jz_readf(LCD_STATE, EOF) != 0; break;
case WAIT_QD: done = jz_readf(LCD_STATE, QD) != 0; break;
case WAIT_FBCPF:
case WAIT_FBCPP: done = fbcopy_done != 0; break;
}
}
}
static void lcd_init_controller(const struct lcd_tgt_config* cfg)
{
/* Set MCFG/MCFG_NEW according to target interface settings */
unsigned mcfg = 0, mcfg_new = 0;
switch(cfg->cmd_width) {
case 8: mcfg |= BF_LCD_MCFG_CWIDTH_V(8BIT); break;
case 9: mcfg |= BF_LCD_MCFG_CWIDTH_V(16BIT_OR_9BIT); break;
case 16: mcfg |= BF_LCD_MCFG_CWIDTH_V(16BIT_OR_9BIT); break;
case 18: mcfg |= BF_LCD_MCFG_CWIDTH_V(18BIT); break;
case 24: mcfg |= BF_LCD_MCFG_CWIDTH_V(24BIT); break;
default: break;
}
if(cfg->cmd_width == 9)
mcfg_new |= BM_LCD_MCFG_NEW_CMD_9BIT;
switch(cfg->bus_width) {
case 8: mcfg_new |= BF_LCD_MCFG_NEW_DWIDTH_V(8BIT); break;
case 9: mcfg_new |= BF_LCD_MCFG_NEW_DWIDTH_V(9BIT); break;
case 16: mcfg_new |= BF_LCD_MCFG_NEW_DWIDTH_V(16BIT); break;
case 18: mcfg_new |= BF_LCD_MCFG_NEW_DWIDTH_V(18BIT); break;
case 24: mcfg_new |= BF_LCD_MCFG_NEW_DWIDTH_V(24BIT); break;
default: break;
}
if(cfg->use_serial)
mcfg_new |= jz_orf(LCD_MCFG_NEW, DTYPE_V(SERIAL), CTYPE_V(SERIAL));
else
mcfg_new |= jz_orf(LCD_MCFG_NEW, DTYPE_V(PARALLEL), CTYPE_V(PARALLEL));
jz_vwritef(mcfg_new, LCD_MCFG_NEW,
6800_MODE(cfg->use_6800_mode),
CSPLY(cfg->wr_polarity ? 0 : 1),
RSPLY(cfg->dc_polarity),
CLKPLY(cfg->clk_polarity));
/* Program the configuration. Note we cannot enable TE signal at
* this stage, because the panel will need to be configured first.
*/
jz_write(LCD_MCFG, mcfg);
jz_write(LCD_MCFG_NEW, mcfg_new);
jz_writef(LCD_MCTRL, NARROW_TE(0), TE_INV(0), NOT_USE_TE(1),
DCSI_SEL(0), MIPI_SLCD(0), FAST_MODE(1), GATE_MASK(0),
DMA_MODE(1), DMA_START(0), DMA_TX_EN(0));
jz_writef(LCD_WTIME, DHTIME(0), DLTIME(0), CHTIME(0), CLTIME(0));
jz_writef(LCD_TASH, TAH(0), TAS(0));
jz_write(LCD_SMWT, 0);
/* DMA settings */
jz_writef(LCD_CTRL, ENABLE(0), BURST_V(64WORD),
EOFM(0), SOFM(0), IFUM(0), QDM(0),
BEDN(cfg->big_endian), PEDN(0));
jz_write(LCD_DAH, LCD_WIDTH);
jz_write(LCD_DAV, LCD_HEIGHT);
}
static void lcd_fbcopy_dma_cb(int evt);
static void lcd_init_descriptors(const struct lcd_tgt_config* cfg)
{
struct lcd_dma_desc* desc = &lcd_dma_desc[0];
int cmdsize = cfg->dma_wr_cmd_size / 4;
/* Set up the command descriptor */
desc[0].da = PHYSADDR(&desc[1]);
desc[0].sa = PHYSADDR(cfg->dma_wr_cmd_buf);
desc[0].fid = 0xc0;
desc[0].cmd = LCD_DMA_CMD_COMMAND | cmdsize;
desc[0].osz = 0;
desc[0].pw = 0;
desc[0].fsz = 0;
switch(cfg->cmd_width) {
case 8: desc[0].cnt = 4*cmdsize; break;
case 9:
case 16: desc[0].cnt = 2*cmdsize; break;
case 18:
case 24: desc[0].cnt = cmdsize; break;
default: break;
}
/* Set up the frame descriptor */
desc[1].da = PHYSADDR(&desc[0]);
desc[1].sa = PHYSADDR(shadowfb);
desc[1].fid = 0xf0;
desc[1].cmd = LCD_DMA_CMD_EOFINT | LCD_DMA_CMD_FRM_EN |
(LCD_WIDTH * LCD_HEIGHT * sizeof(fb_data) / 4);
desc[1].osz = 0;
desc[1].pw = 0;
desc[1].fsz = (LCD_WIDTH - 1) | ((LCD_HEIGHT - 1) << 12);
#if LCD_DEPTH == 16
desc[1].cnt = LCD_DMA_CNT_BPP_16BIT;
#elif LCD_DEPTH == 24
desc[1].cnt = LCD_DMA_CNT_BPP_18BIT_OR_24BIT;
#else
# error "unsupported LCD bit depth"
#endif
/* Commit LCD DMA descriptors */
commit_dcache_range(&desc[0], 2*sizeof(struct lcd_dma_desc));
/* Set fbcopy channel callback */
dma_set_callback(DMA_CHANNEL_FBCOPY, lcd_fbcopy_dma_cb);
}
static void lcd_fbcopy_dma_cb(int evt)
{
(void)evt;
fbcopy_done = 1;
}
static void lcd_fbcopy_dma_run(dma_desc* d, Lcd_ID id)
{
if(lcd_panic_mode) {
/* Can't use DMA if interrupts are off, so just do a memcpy().
* Doesn't need to be efficient, since AFAIK the panic screen is
* the only place that can update the LCD with interrupts disabled. */
memcpy(shadowfb, FBADDR(0, 0), LCD_WIDTH*LCD_HEIGHT*sizeof(fb_data));
commit_dcache();
return;
}
commit_dcache_range(d, sizeof(struct dma_desc));
/* Start the transfer */
fbcopy_done = 0;
REG_DMA_CHN_DA(DMA_CHANNEL_FBCOPY) = PHYSADDR(d);
jz_writef(DMA_CHN_CS(DMA_CHANNEL_FBCOPY), DES8(1), NDES(0));
jz_set(DMA_DB, 1 << DMA_CHANNEL_FBCOPY);
jz_writef(DMA_CHN_CS(DMA_CHANNEL_FBCOPY), CTE(1));
lcd_wait(id);
}
static void lcd_fbcopy_dma_full(void)
{
dma_desc d;
d.cm = jz_orf(DMA_CHN_CM, SAI(1), DAI(1), RDIL(9),
SP_V(32BIT), DP_V(32BIT), TSZ_V(AUTO),
STDE(0), TIE(1), LINK(0));
d.sa = PHYSADDR(FBADDR(0, 0));
d.ta = PHYSADDR(shadowfb);
d.tc = LCD_WIDTH * LCD_HEIGHT * sizeof(fb_data);
d.sd = 0;
d.rt = jz_orf(DMA_CHN_RT, TYPE_V(AUTO));
d.pad0 = 0;
d.pad1 = 0;
lcd_fbcopy_dma_run(&d, WAIT_FBCPF);
}
/* NOTE: DMA stride mode can only transfer up to 255 blocks at once.
*
* - for LCD_STRIDEFORMAT == VERTICAL_STRIDE, keep width <= 255
* - for LCD_STRIDEFORMAT == HORIZONTAL_STRIDE, keep height <= 255
*/
static void lcd_fbcopy_dma_partial1(int x, int y, int width, int height)
{
int stride = STRIDE_MAIN(LCD_WIDTH - width, LCD_HEIGHT - height);
dma_desc d;
d.cm = jz_orf(DMA_CHN_CM, SAI(1), DAI(1), RDIL(9),
SP_V(32BIT), DP_V(32BIT), TSZ_V(AUTO),
STDE(stride ? 1 : 0), TIE(1), LINK(0));
d.sa = PHYSADDR(FBADDR(x, y));
d.ta = PHYSADDR(&shadowfb[STRIDE_MAIN(y * LCD_WIDTH + x,
x * LCD_HEIGHT + y)]);
d.rt = jz_orf(DMA_CHN_RT, TYPE_V(AUTO));
d.pad0 = 0;
d.pad1 = 0;
if(stride) {
stride *= sizeof(fb_data);
d.sd = (stride << 16) | stride;
d.tc = (STRIDE_MAIN(height, width) << 16) |
(STRIDE_MAIN(width, height) * sizeof(fb_data));
} else {
d.sd = 0;
d.tc = width * height * sizeof(fb_data);
}
lcd_fbcopy_dma_run(&d, WAIT_FBCPP);
}
#if STRIDE_MAIN(LCD_HEIGHT, LCD_WIDTH) > 255
static void lcd_fbcopy_dma_partial(int x, int y, int width, int height)
{
do {
int count = MIN(STRIDE_MAIN(height, width), 255);
lcd_fbcopy_dma_partial1(x, y, STRIDE_MAIN(width, count),
STRIDE_MAIN(count, height));
STRIDE_MAIN(height, width) -= count;
STRIDE_MAIN(y, x) += count;
} while(STRIDE_MAIN(height, width) != 0);
}
#else
# define lcd_fbcopy_dma_partial lcd_fbcopy_dma_partial1
#endif
typedef enum {
MODE_INIT,
MODE_SLEEP
} DMA_Mode;
static void lcd_dma_start(DMA_Mode mode)
{
/* Set format conversion bit, seems necessary for DMA mode.
* Must set DTIMES here if we use an 8-bit bus type. */
int dtimes = lcd_tgt_config.bus_width == 8 ? (LCD_DEPTH/8 - 1) : 0;
jz_writef(LCD_MCFG_NEW, FMT_CONV(1), DTIMES(dtimes));
/* Program vsync configuration */
jz_writef(LCD_MCTRL, NARROW_TE(lcd_tgt_config.te_narrow),
TE_INV(lcd_tgt_config.te_polarity ? 0 : 1),
NOT_USE_TE(lcd_tgt_config.te_enable ? 0 : 1));
/* ref PM sec. 4.9.1 DMA operation,
* as well as sec. 4.5.2 Enabling the Controller.
* I think we're effectively doing the last bit
* of enabling the controller here, and then
* doing dma start.
*/
jz_writef(LCD_MCTRL, DMA_MODE(1), DMA_START(1));
while(jz_readf(LCD_MSTATE, BUSY));
jz_writef(LCD_MCTRL, DMA_TX_EN(1));
/* clear any old flags */
jz_write(LCD_STATE, 0);
/* Begin DMA transfer. Need to start a dummy frame or else we will
* not be able to pass lcd_wait_frame() at the first lcd_update(). */
// if (mode == MODE_INIT) { // Run this only once on Startup
jz_write(LCD_DA, PHYSADDR(&lcd_dma_desc[0]));
jz_writef(LCD_CTRL, ENABLE(1));
// }
(void)mode;
lcd_on = true;
}
static bool lcd_wait_frame(void)
{
/* Bail out if DMA is not enabled */
if(!lcd_active())
return false;
/* Usual case -- wait for EOF, wait for FIFO to drain, clear EOF */
lcd_wait(WAIT_EOF);
lcd_wait(WAIT_FRAME);
jz_writef(LCD_STATE, EOF(0));
return true;
}
static void lcd_dma_stop(DMA_Mode mode)
{
int irq = disable_irq_save();
lcd_on = false;
restore_irq(irq);
if (mode == MODE_INIT) { // Run this only once when endinng
#ifdef LCD_X1000_DMA_WAIT_FOR_FRAME
/* Wait for frame to finish to avoid misaligning the write pointer */
lcd_wait_frame();
#endif
/* Stop the DMA transfer */
jz_writef(LCD_CTRL, ENABLE(0));
jz_writef(LCD_MCTRL, DMA_TX_EN(0));
/* Wait for disable to take effect */
lcd_wait(WAIT_QD);
} else { // MODE_SLEEP
jz_writef(LCD_CTRL, ENABLE(0));
/* Usual case -- wait for EOF, wait for FIFO to drain */
lcd_wait(SLEEP_EOF);
lcd_wait(SLEEP_FRAME);
/* Stop the DMA transfer */
jz_writef(LCD_MCTRL, DMA_TX_EN(0));
}
jz_write(LCD_STATE, 0); // clear State
/* Clear format conversion bit, disable vsync */
jz_writef(LCD_MCFG_NEW, FMT_CONV(0), DTIMES(0));
jz_writef(LCD_MCTRL, NARROW_TE(0), TE_INV(0), NOT_USE_TE(1));
}
static void lcd_send(uint32_t d)
{
lcd_wait(LCD_SEND0);
REG_LCD_MDATA = d;
}
void lcd_set_clock(x1000_clk_t clk, uint32_t freq)
{
uint32_t in_freq = clk_get(clk);
uint32_t div = clk_calc_div(in_freq, freq);
jz_writef(CPM_LPCDR, CE(1), CLKDIV(div - 1),
CLKSRC(clk == X1000_CLK_MPLL ? 1 : 0));
while(jz_readf(CPM_LPCDR, BUSY));
jz_writef(CPM_LPCDR, CE(0));
}
void lcd_exec_commands(const uint32_t* cmdseq)
{
while(*cmdseq != LCD_INSTR_END) {
uint32_t instr = *cmdseq++;
uint32_t d = 0;
switch(instr) {
case LCD_INSTR_CMD:
d = jz_orf(LCD_MDATA, TYPE_V(CMD));
/* fallthrough */
case LCD_INSTR_DAT:
d |= *cmdseq++;
lcd_send(d);
break;
case LCD_INSTR_UDELAY:
udelay(*cmdseq++);
break;
default:
break;
}
}
lcd_wait(LCD_SEND1);
}
void lcd_init_device(void)
{
jz_writef(CPM_CLKGR, LCD(0));
lcd_init_controller(&lcd_tgt_config);
lcd_init_descriptors(&lcd_tgt_config);
lcd_tgt_enable(true);
lcd_dma_start(MODE_INIT);
}
#ifdef HAVE_LCD_SHUTDOWN
void lcd_shutdown(void)
{
if(lcd_sleeping)
lcd_tgt_sleep(false);
else if(lcd_active())
lcd_dma_stop(MODE_INIT);
lcd_tgt_enable(false);
jz_writef(CPM_CLKGR, LCD(1));
}
#endif
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
bool lcd_active(void)
{
return lcd_on;
}
void lcd_enable(bool en)
{
bool state = lcd_active();
if(state && !en)
#if defined(BOOTLOADER)
lcd_dma_stop(MODE_INIT);
#else
lcd_dma_stop(MODE_SLEEP);
#endif
/* Deal with sleep mode */
#if defined(HAVE_LCD_SLEEP) || defined(LCD_X1000_FASTSLEEP)
#if defined(LCD_X1000_FASTSLEEP)
if(state && !en) {
lcd_tgt_sleep(true);
lcd_sleeping = true;
} else
#endif
if(!state && en && lcd_sleeping) {
lcd_tgt_sleep(false);
lcd_sleeping = false;
}
#endif
/* Handle turning the LCD back on */
if(!state && en)
{
send_event(LCD_EVENT_ACTIVATION, NULL);
#if defined(BOOTLOADER)
lcd_dma_start(MODE_INIT);
#else
lcd_dma_start(MODE_SLEEP);
#endif
}
}
#endif
#if defined(HAVE_LCD_SLEEP)
#if defined(LCD_X1000_FASTSLEEP)
# error "Do not define HAVE_LCD_SLEEP if target has LCD_X1000_FASTSLEEP"
#endif
void lcd_sleep(void)
{
if(!lcd_sleeping) {
lcd_enable(false);
lcd_tgt_sleep(true);
lcd_sleeping = true;
}
}
#endif
void lcd_update(void)
{
if(!lcd_wait_frame())
return;
commit_dcache();
lcd_fbcopy_dma_full();
jz_writef(LCD_MCTRL, DMA_START(1), DMA_MODE(1));
}
/* We can do partial updates even though the DMA doesn't seem to handle it well,
* due to the fact that this is actually putting it into a buffer, and then
* it gets transferred via DMA to a secondary buffer, which gets transferred in
* its entirety to the LCD through a different DMA process. */
void lcd_update_rect(int x, int y, int width, int height)
{
if(!lcd_wait_frame())
return;
/* Clamp the coordinates */
if(x < 0) {
width += x;
x = 0;
}
if(y < 0) {
height += y;
y = 0;
}
if(width > LCD_WIDTH - x)
width = LCD_WIDTH - x;
if(height > LCD_HEIGHT - y)
height = LCD_HEIGHT - y;
if(width < 0 || height < 0)
return;
commit_dcache();
lcd_fbcopy_dma_partial(x, y, width, height);
jz_writef(LCD_MCTRL, DMA_START(1), DMA_MODE(1));
}
|