summaryrefslogtreecommitdiffstats
path: root/firmware/target/mips/ingenic_x1000/nand-x1000.c
blob: fbac824789fc8b86ed1316782ded21a6ec57a332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2021 Aidan MacDonald
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include "nand-x1000.h"
#include "sfc-x1000.h"
#include "system.h"
#include <stddef.h>

/* NAND command numbers */
#define NAND_CMD_READ_ID            0x9f
#define NAND_CMD_WRITE_ENABLE       0x06
#define NAND_CMD_GET_FEATURE        0x0f
#define NAND_CMD_SET_FEATURE        0x1f
#define NAND_CMD_PAGE_READ_TO_CACHE 0x13
#define NAND_CMD_READ_FROM_CACHE    0x0b
#define NAND_CMD_READ_FROM_CACHEx4  0x6b
#define NAND_CMD_PROGRAM_LOAD       0x02
#define NAND_CMD_PROGRAM_LOADx4     0x32
#define NAND_CMD_PROGRAM_EXECUTE    0x10
#define NAND_CMD_BLOCK_ERASE        0xd8

/* NAND device register addresses for GET_FEATURE / SET_FEATURE */
#define NAND_FREG_PROTECTION        0xa0
#define NAND_FREG_FEATURE           0xb0
#define NAND_FREG_STATUS            0xc0

/* Protection register bits */
#define NAND_FREG_PROTECTION_BRWD   0x80
#define NAND_FREG_PROTECTION_BP2    0x20
#define NAND_FREG_PROTECTION_BP1    0x10
#define NAND_FREG_PROTECTION_BP0    0x80
/* Mask of BP bits 0-2 */
#define NAND_FREG_PROTECTION_ALLBP  (0x38)

/* Feature register bits */
#define NAND_FREG_FEATURE_QE        0x01

/* Status register bits */
#define NAND_FREG_STATUS_OIP        0x01
#define NAND_FREG_STATUS_WEL        0x02
#define NAND_FREG_STATUS_E_FAIL     0x04
#define NAND_FREG_STATUS_P_FAIL     0x08

/* NAND chip config */
const nand_chip_data target_nand_chip_data[] = {
#ifdef FIIO_M3K
    {
        /* ATO25D1GA */
        .mf_id = 0x9b,
        .dev_id = 0x12,
        .dev_conf = jz_orf(SFC_DEV_CONF, CE_DL(1), HOLD_DL(1), WP_DL(1),
                           CPHA(0), CPOL(0), TSH(7), TSETUP(0), THOLD(0),
                           STA_TYPE_V(1BYTE), CMD_TYPE_V(8BITS), SMP_DELAY(1)),
        .clock_freq = 150000000,
        .log2_page_size = 11, /* = 2048 bytes */
        .log2_block_size = 6, /* = 64 pages */
        .rowaddr_width = 3,
        .coladdr_width = 2,
        .flags = NANDCHIP_FLAG_QUAD,
    }
#else
    /* Nobody will use this anyway if the device has no NAND flash */
    { 0 },
#endif
};

const size_t target_nand_chip_count =
    sizeof(target_nand_chip_data) / sizeof(nand_chip_data);

/* NAND ops -- high level primitives used by the driver */
static int nandop_wait_status(int errbit);
static int nandop_read_page(uint32_t row_addr, uint8_t* buf);
static int nandop_write_page(uint32_t row_addr, const uint8_t* buf);
static int nandop_erase_block(uint32_t block_addr);
static int nandop_set_write_protect(bool en);

/* NAND commands -- 1-to-1 mapping between chip commands and functions */
static int nandcmd_read_id(int* mf_id, int* dev_id);
static int nandcmd_write_enable(void);
static int nandcmd_get_feature(uint8_t reg);
static int nandcmd_set_feature(uint8_t reg, uint8_t val);
static int nandcmd_page_read_to_cache(uint32_t row_addr);
static int nandcmd_read_from_cache(uint8_t* buf);
static int nandcmd_program_load(const uint8_t* buf);
static int nandcmd_program_execute(uint32_t row_addr);
static int nandcmd_block_erase(uint32_t block_addr);

struct nand_drv {
    const nand_chip_data* chip_data;
    bool write_enabled;
};

static struct nand_drv nand_drv;
static uint8_t nand_auxbuf[32] CACHEALIGN_ATTR;

static void nand_drv_reset(void)
{
    nand_drv.chip_data = NULL;
    nand_drv.write_enabled = false;
}

int nand_open(void)
{
    sfc_init();
    sfc_lock();

    nand_drv_reset();
    sfc_open();

    const nand_chip_data* chip_data = &target_nand_chip_data[0];
    sfc_set_dev_conf(chip_data->dev_conf);
    sfc_set_clock(chip_data->clock_freq);

    return NAND_SUCCESS;
}

void nand_close(void)
{
    sfc_lock();
    sfc_close();
    nand_drv_reset();
    sfc_unlock();
}

int nand_identify(int* mf_id, int* dev_id)
{
    sfc_lock();

    int status = nandcmd_read_id(mf_id, dev_id);
    if(status < 0)
        goto error;

    for(size_t i = 0; i < target_nand_chip_count; ++i) {
        const nand_chip_data* data = &target_nand_chip_data[i];
        if(data->mf_id == *mf_id && data->dev_id == *dev_id) {
            nand_drv.chip_data = data;
            break;
        }
    }

    if(!nand_drv.chip_data) {
        status = NAND_ERR_UNKNOWN_CHIP;
        goto error;
    }

    /* Set parameters according to new chip data */
    sfc_set_dev_conf(nand_drv.chip_data->dev_conf);
    sfc_set_clock(nand_drv.chip_data->clock_freq);
    status = NAND_SUCCESS;

  error:
    sfc_unlock();
    return status;
}

const nand_chip_data* nand_get_chip_data(void)
{
    return nand_drv.chip_data;
}

extern int nand_enable_writes(bool en)
{
    if(en == nand_drv.write_enabled)
        return NAND_SUCCESS;

    int rc = nandop_set_write_protect(!en);
    if(rc == NAND_SUCCESS)
        nand_drv.write_enabled = en;

    return rc;
}

static int nand_rdwr(bool write, uint32_t addr, uint32_t size, uint8_t* buf)
{
    const uint32_t page_size = (1 << nand_drv.chip_data->log2_page_size);

    if(addr & (page_size - 1))
        return NAND_ERR_UNALIGNED;
    if(size & (page_size - 1))
        return NAND_ERR_UNALIGNED;
    if(size <= 0)
        return NAND_SUCCESS;
    if(write && !nand_drv.write_enabled)
        return NAND_ERR_WRITE_PROTECT;
    if((uint32_t)buf & (CACHEALIGN_SIZE - 1))
        return NAND_ERR_UNALIGNED;

    addr >>= nand_drv.chip_data->log2_page_size;
    size >>= nand_drv.chip_data->log2_page_size;

    int rc = NAND_SUCCESS;
    sfc_lock();

    for(; size > 0; --size, ++addr, buf += page_size) {
        if(write)
            rc = nandop_write_page(addr, buf);
        else
            rc = nandop_read_page(addr, buf);

        if(rc)
            break;
    }

    sfc_unlock();
    return rc;
}

int nand_read(uint32_t addr, uint32_t size, uint8_t* buf)
{
    return nand_rdwr(false, addr, size, buf);
}

int nand_write(uint32_t addr, uint32_t size, const uint8_t* buf)
{
    return nand_rdwr(true, addr, size, (uint8_t*)buf);
}

int nand_erase(uint32_t addr, uint32_t size)
{
    const uint32_t page_size = 1 << nand_drv.chip_data->log2_page_size;
    const uint32_t block_size = page_size << nand_drv.chip_data->log2_block_size;
    const uint32_t pages_per_block = 1 << nand_drv.chip_data->log2_page_size;

    if(addr & (block_size - 1))
        return NAND_ERR_UNALIGNED;
    if(size & (block_size - 1))
        return NAND_ERR_UNALIGNED;
    if(size <= 0)
        return NAND_SUCCESS;
    if(!nand_drv.write_enabled)
        return NAND_ERR_WRITE_PROTECT;

    addr >>= nand_drv.chip_data->log2_page_size;
    size >>= nand_drv.chip_data->log2_page_size;
    size >>= nand_drv.chip_data->log2_block_size;

    int rc = NAND_SUCCESS;
    sfc_lock();

    for(; size > 0; --size, addr += pages_per_block)
        if((rc = nandop_erase_block(addr)))
            break;

    sfc_unlock();
    return rc;
}

/*
 * NAND ops
 */

static int nandop_wait_status(int errbit)
{
    int reg;
    do {
        reg = nandcmd_get_feature(NAND_FREG_STATUS);
        if(reg < 0)
            return reg;
    } while(reg & NAND_FREG_STATUS_OIP);

    if(reg & errbit)
        return NAND_ERR_COMMAND;

    return reg;
}

static int nandop_read_page(uint32_t row_addr, uint8_t* buf)
{
    int status;

    if((status = nandcmd_page_read_to_cache(row_addr)) < 0)
        return status;
    if((status = nandop_wait_status(0)) < 0)
        return status;
    if((status = nandcmd_read_from_cache(buf)) < 0)
        return status;

    return NAND_SUCCESS;
}

static int nandop_write_page(uint32_t row_addr, const uint8_t* buf)
{
    int status;

    if((status = nandcmd_write_enable()) < 0)
        return status;
    if((status = nandcmd_program_load(buf)) < 0)
        return status;
    if((status = nandcmd_program_execute(row_addr)) < 0)
        return status;
    if((status = nandop_wait_status(NAND_FREG_STATUS_P_FAIL)) < 0)
        return status;

    return NAND_SUCCESS;
}

static int nandop_erase_block(uint32_t block_addr)
{
    int status;

    if((status = nandcmd_write_enable()) < 0)
        return status;
    if((status = nandcmd_block_erase(block_addr)) < 0)
        return status;
    if((status = nandop_wait_status(NAND_FREG_STATUS_E_FAIL)) < 0)
        return status;

    return NAND_SUCCESS;
}

static int nandop_set_write_protect(bool en)
{
    int val = nandcmd_get_feature(NAND_FREG_PROTECTION);
    if(val < 0)
        return val;

    if(en) {
        val &= ~NAND_FREG_PROTECTION_ALLBP;
        if(nand_drv.chip_data->flags & NANDCHIP_FLAG_USE_BRWD)
            val &= ~NAND_FREG_PROTECTION_BRWD;
    } else {
        val |= NAND_FREG_PROTECTION_ALLBP;
        if(nand_drv.chip_data->flags & NANDCHIP_FLAG_USE_BRWD)
            val |= NAND_FREG_PROTECTION_BRWD;
    }

    /* NOTE: The WP pin typically only protects changes to the protection
     * register -- it doesn't actually prevent writing to the chip. That's
     * why it should be re-enabled after setting the new protection status.
     */
    sfc_set_wp_enable(false);
    int status = nandcmd_set_feature(NAND_FREG_PROTECTION, val);
    sfc_set_wp_enable(true);

    if(status < 0)
        return status;

    return NAND_SUCCESS;
}

/*
 * Low-level NAND commands
 */

static int nandcmd_read_id(int* mf_id, int* dev_id)
{
    sfc_op op = {0};
    op.command = NAND_CMD_READ_ID;
    op.flags = SFC_FLAG_READ;
    op.addr_bytes = 1;
    op.addr_lo = 0;
    op.data_bytes = 2;
    op.buffer = nand_auxbuf;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    *mf_id = nand_auxbuf[0];
    *dev_id = nand_auxbuf[1];
    return NAND_SUCCESS;
}

static int nandcmd_write_enable(void)
{
    sfc_op op = {0};
    op.command = NAND_CMD_WRITE_ENABLE;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_get_feature(uint8_t reg)
{
    sfc_op op = {0};
    op.command = NAND_CMD_GET_FEATURE;
    op.flags = SFC_FLAG_READ;
    op.addr_bytes = 1;
    op.addr_lo = reg;
    op.data_bytes = 1;
    op.buffer = nand_auxbuf;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return nand_auxbuf[0];
}

static int nandcmd_set_feature(uint8_t reg, uint8_t val)
{
    sfc_op op = {0};
    op.command = NAND_CMD_SET_FEATURE;
    op.flags = SFC_FLAG_READ;
    op.addr_bytes = 1;
    op.addr_lo = reg;
    op.data_bytes = 1;
    op.buffer = nand_auxbuf;
    nand_auxbuf[0] = val;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_page_read_to_cache(uint32_t row_addr)
{
    sfc_op op = {0};
    op.command = NAND_CMD_PAGE_READ_TO_CACHE;
    op.addr_bytes = nand_drv.chip_data->rowaddr_width;
    op.addr_lo = row_addr;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_read_from_cache(uint8_t* buf)
{
    sfc_op op = {0};
    if(nand_drv.chip_data->flags & NANDCHIP_FLAG_QUAD) {
        op.command = NAND_CMD_READ_FROM_CACHEx4;
        op.mode = SFC_MODE_QUAD_IO;
    } else {
        op.command = NAND_CMD_READ_FROM_CACHE;
        op.mode = SFC_MODE_STANDARD;
    }

    op.flags = SFC_FLAG_READ;
    op.addr_bytes = nand_drv.chip_data->coladdr_width;
    op.addr_lo = 0;
    op.dummy_bits = 8; // NOTE: this may need a chip_data parameter
    op.data_bytes = (1 << nand_drv.chip_data->log2_page_size);
    op.buffer = buf;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_program_load(const uint8_t* buf)
{
    sfc_op op = {0};
    if(nand_drv.chip_data->flags & NANDCHIP_FLAG_QUAD) {
        op.command = NAND_CMD_PROGRAM_LOADx4;
        op.mode = SFC_MODE_QUAD_IO;
    } else {
        op.command = NAND_CMD_PROGRAM_LOAD;
        op.mode = SFC_MODE_STANDARD;
    }

    op.flags = SFC_FLAG_WRITE;
    op.addr_bytes = nand_drv.chip_data->coladdr_width;
    op.addr_lo = 0;
    op.data_bytes = (1 << nand_drv.chip_data->log2_page_size);
    op.buffer = (void*)buf;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_program_execute(uint32_t row_addr)
{
    sfc_op op = {0};
    op.command = NAND_CMD_PROGRAM_EXECUTE;
    op.addr_bytes = nand_drv.chip_data->rowaddr_width;
    op.addr_lo = row_addr;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}

static int nandcmd_block_erase(uint32_t block_addr)
{
    sfc_op op = {0};
    op.command = NAND_CMD_BLOCK_ERASE;
    op.addr_bytes = nand_drv.chip_data->rowaddr_width;
    op.addr_lo = block_addr;
    if(sfc_exec(&op))
        return NAND_ERR_CONTROLLER;

    return NAND_SUCCESS;
}