summaryrefslogtreecommitdiffstats
path: root/firmware/target/mips/ingenic_x1000/nand-x1000.c
blob: 827a79ebce2d17c7ad59a5ef242a25162ddb4697 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2021 Aidan MacDonald
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include "nand-x1000.h"
#include "sfc-x1000.h"
#include "system.h"
#include "logf.h"
#include <string.h>

const struct nand_chip supported_nand_chips[] = {
#if defined(FIIO_M3K) || defined(SHANLING_Q1) || defined(EROS_QN)
    {
        /* ATO25D1GA */
        .mf_id = 0x9b,
        .dev_id = 0x12,
        .log2_ppb = 6, /* 64 pages */
        .page_size = 2048,
        .oob_size = 64,
        .nr_blocks = 1024,
        .bbm_pos = 2048,
        .clock_freq = 150000000,
        .dev_conf = jz_orf(SFC_DEV_CONF,
                           CE_DL(1), HOLD_DL(1), WP_DL(1),
                           CPHA(0), CPOL(0),
                           TSH(7), TSETUP(0), THOLD(0),
                           STA_TYPE_V(1BYTE), CMD_TYPE_V(8BITS),
                           SMP_DELAY(1)),
        .flags = NAND_CHIPFLAG_QUAD | NAND_CHIPFLAG_HAS_QE_BIT,
        .cmd_page_read = NANDCMD_PAGE_READ,
        .cmd_program_execute = NANDCMD_PROGRAM_EXECUTE,
        .cmd_block_erase = NANDCMD_BLOCK_ERASE,
        .cmd_read_cache = NANDCMD_READ_CACHE_x4,
        .cmd_program_load = NANDCMD_PROGRAM_LOAD_x4,
    },
#else
    { 0 },
#endif
};

const size_t nr_supported_nand_chips = ARRAYLEN(supported_nand_chips);

static struct nand_drv static_nand_drv;
static uint8_t static_scratch_buf[NAND_DRV_SCRATCHSIZE] CACHEALIGN_ATTR;
static uint8_t static_page_buf[NAND_DRV_MAXPAGESIZE] CACHEALIGN_ATTR;

struct nand_drv* nand_init(void)
{
    static bool inited = false;
    if(!inited) {
        mutex_init(&static_nand_drv.mutex);
        static_nand_drv.scratch_buf = static_scratch_buf;
        static_nand_drv.page_buf = static_page_buf;
        static_nand_drv.refcount = 0;
    }

    return &static_nand_drv;
}

static uint8_t nand_get_reg(struct nand_drv* drv, uint8_t reg)
{
    sfc_exec(NANDCMD_GET_FEATURE, reg, drv->scratch_buf, 1|SFC_READ);
    return drv->scratch_buf[0];
}

static void nand_set_reg(struct nand_drv* drv, uint8_t reg, uint8_t val)
{
    drv->scratch_buf[0] = val;
    sfc_exec(NANDCMD_SET_FEATURE, reg, drv->scratch_buf, 1|SFC_WRITE);
}

static void nand_upd_reg(struct nand_drv* drv, uint8_t reg, uint8_t msk, uint8_t val)
{
    uint8_t x = nand_get_reg(drv, reg);
    x &= ~msk;
    x |= val;
    nand_set_reg(drv, reg, x);
}

static bool identify_chip(struct nand_drv* drv)
{
    /* Read ID command has some variations; Linux handles these 3:
     * - no address or dummy bytes
     * - 1 byte address, no dummy byte
     * - no address byte, 1 byte dummy
     *
     * Currently we use the 2nd method, aka. address read ID.
     */
    sfc_exec(NANDCMD_READID_ADDR, 0, drv->scratch_buf, 4|SFC_READ);
    drv->mf_id = drv->scratch_buf[0];
    drv->dev_id = drv->scratch_buf[1];
    drv->dev_id2 = drv->scratch_buf[2];

    for(size_t i = 0; i < nr_supported_nand_chips; ++i) {
        const struct nand_chip* chip = &supported_nand_chips[i];
        if(chip->mf_id != drv->mf_id || chip->dev_id != drv->dev_id)
            continue;

        if((chip->flags & NAND_CHIPFLAG_HAS_DEVID2) &&
           chip->dev_id2 != drv->dev_id2)
            continue;

        drv->chip = chip;
        return true;
    }

    return false;
}

static void setup_chip_data(struct nand_drv* drv)
{
    drv->ppb = 1 << drv->chip->log2_ppb;
    drv->fpage_size = drv->chip->page_size + drv->chip->oob_size;
}

static void setup_chip_registers(struct nand_drv* drv)
{
    /* Set chip registers to enter normal operation */
    if(drv->chip->flags & NAND_CHIPFLAG_HAS_QE_BIT) {
        bool en = (drv->chip->flags & NAND_CHIPFLAG_QUAD) != 0;
        nand_upd_reg(drv, FREG_CFG, FREG_CFG_QUAD_ENABLE,
                     en ? FREG_CFG_QUAD_ENABLE : 0);
    }

    if(drv->chip->flags & NAND_CHIPFLAG_ON_DIE_ECC) {
        /* Enable on-die ECC */
        nand_upd_reg(drv, FREG_CFG, FREG_CFG_ECC_ENABLE, FREG_CFG_ECC_ENABLE);
    }

    /* Clear OTP bit to access the main data array */
    nand_upd_reg(drv, FREG_CFG, FREG_CFG_OTP_ENABLE, 0);

    /* Clear write protection bits */
    nand_set_reg(drv, FREG_PROT, FREG_PROT_UNLOCK);

    /* Call any chip-specific hooks */
    if(drv->chip->setup_chip)
        drv->chip->setup_chip(drv);
}

int nand_open(struct nand_drv* drv)
{
    if(drv->refcount > 0) {
        drv->refcount++;
        return NAND_SUCCESS;
    }

    /* Initialize the controller */
    sfc_open();
    sfc_set_dev_conf(supported_nand_chips[0].dev_conf);
    sfc_set_clock(supported_nand_chips[0].clock_freq);

    /* Send the software reset command */
    sfc_exec(NANDCMD_RESET, 0, NULL, 0);
    mdelay(10);

    /* Chip identification and setup */
    if(!identify_chip(drv))
        return NAND_ERR_UNKNOWN_CHIP;

    setup_chip_data(drv);

    /* Set new SFC parameters */
    sfc_set_dev_conf(drv->chip->dev_conf);
    sfc_set_clock(drv->chip->clock_freq);

    /* Enter normal operating mode */
    setup_chip_registers(drv);

    drv->refcount++;
    return NAND_SUCCESS;
}

void nand_close(struct nand_drv* drv)
{
    --drv->refcount;
    if(drv->refcount > 0)
        return;

    /* Let's reset the chip... the idea is to restore the registers
     * to whatever they should "normally" be */
    sfc_exec(NANDCMD_RESET, 0, NULL, 0);
    mdelay(10);

    sfc_close();
}

void nand_enable_otp(struct nand_drv* drv, bool enable)
{
    nand_upd_reg(drv, FREG_CFG, FREG_CFG_OTP_ENABLE,
                 enable ? FREG_CFG_OTP_ENABLE : 0);
}

static uint8_t nand_wait_busy(struct nand_drv* drv)
{
    uint8_t reg;
    do {
        reg = nand_get_reg(drv, FREG_STATUS);
    } while(reg & FREG_STATUS_BUSY);
    return reg;
}

int nand_block_erase(struct nand_drv* drv, nand_block_t block)
{
    sfc_exec(NANDCMD_WR_EN, 0, NULL, 0);
    sfc_exec(drv->chip->cmd_block_erase, block, NULL, 0);

    uint8_t status = nand_wait_busy(drv);
    if(status & FREG_STATUS_EFAIL)
        return NAND_ERR_ERASE_FAIL;
    else
        return NAND_SUCCESS;
}

int nand_page_program(struct nand_drv* drv, nand_page_t page, const void* buffer)
{
    sfc_exec(NANDCMD_WR_EN, 0, NULL, 0);
    sfc_exec(drv->chip->cmd_program_load,
             0, (void*)buffer, drv->fpage_size|SFC_WRITE);
    sfc_exec(drv->chip->cmd_program_execute, page, NULL, 0);

    uint8_t status = nand_wait_busy(drv);
    if(status & FREG_STATUS_PFAIL)
        return NAND_ERR_PROGRAM_FAIL;
    else
        return NAND_SUCCESS;
}

int nand_page_read(struct nand_drv* drv, nand_page_t page, void* buffer)
{
    sfc_exec(drv->chip->cmd_page_read, page, NULL, 0);
    nand_wait_busy(drv);
    sfc_exec(drv->chip->cmd_read_cache, 0, buffer, drv->fpage_size|SFC_READ);

    if(drv->chip->flags & NAND_CHIPFLAG_ON_DIE_ECC) {
        uint8_t status = nand_get_reg(drv, FREG_STATUS);

        if(status & FREG_STATUS_ECC_UNCOR_ERR) {
            logf("ecc uncorrectable error on page %08lx", (unsigned long)page);
            return NAND_ERR_ECC_FAIL;
        }

        if(status & FREG_STATUS_ECC_HAS_FLIPS) {
            logf("ecc corrected bitflips on page %08lx", (unsigned long)page);
        }
    }

    return NAND_SUCCESS;
}

int nand_read_bytes(struct nand_drv* drv, uint32_t byte_addr, uint32_t byte_len, void* buffer)
{
    if(byte_len == 0)
        return NAND_SUCCESS;

    int rc;
    unsigned pg_size = drv->chip->page_size;
    nand_page_t page = byte_addr / pg_size;
    unsigned offset = byte_addr % pg_size;
    while(1) {
        rc = nand_page_read(drv, page, drv->page_buf);
        if(rc < 0)
            return rc;

        memcpy(buffer, &drv->page_buf[offset], MIN(pg_size - offset, byte_len));

        if(byte_len <= pg_size - offset)
            break;

        byte_len -= pg_size - offset;
        buffer += pg_size - offset;
        offset = 0;
        page++;
    }

    return NAND_SUCCESS;
}

int nand_write_bytes(struct nand_drv* drv, uint32_t byte_addr, uint32_t byte_len, const void* buffer)
{
    if(byte_len == 0)
        return NAND_SUCCESS;

    int rc;
    unsigned pg_size = drv->chip->page_size;
    unsigned blk_size = pg_size << drv->chip->log2_ppb;

    if(byte_addr % blk_size != 0)
        return NAND_ERR_UNALIGNED;
    if(byte_len % blk_size != 0)
        return NAND_ERR_UNALIGNED;

    nand_page_t page = byte_addr / pg_size;
    nand_page_t end_page = page + (byte_len / pg_size);

    for(nand_block_t blk = page; blk < end_page; blk += drv->ppb) {
        rc = nand_block_erase(drv, blk);
        if(rc < 0)
            return rc;
    }

    for(; page != end_page; ++page) {
        memcpy(drv->page_buf, buffer, pg_size);
        memset(&drv->page_buf[pg_size], 0xff, drv->chip->oob_size);
        buffer += pg_size;

        rc = nand_page_program(drv, page, drv->page_buf);
        if(rc < 0)
            return rc;
    }

    return NAND_SUCCESS;
}

/* TODO - NAND driver future improvements
 *
 * 1. Support sofware or on-die ECC transparently. Support debug ECC bypass.
 *
 * It's probably best to add an API call to turn ECC on or off. Software
 * ECC and most or all on-die ECC implementations require some OOB bytes
 * to function; which leads us to the next problem...
 *
 * 2. Allow safe access to OOB areas
 *
 * The OOB data area is not fully available to users; it is also occupied
 * by ECC data and bad block markings. The NAND driver needs to provide a
 * mapping which allows OOB data users to map around those reserved areas,
 * otherwise it's not really possible to use OOB data.
 *
 * 3. Support partial page programming.
 *
 * This might already work. My understanding of NAND flash is that bits are
 * represented by charge deposited on flash cells. In the case of SLC flash,
 * cells are one bit. For MLC flash, cells can store more than one bit; but
 * MLC flash is much less reliable than SLC. We probably don't have to be
 * concerned about MLC flash, and its does not support partial programming
 * anyway due to the cell characteristics, so I will only consider SLC here.
 *
 * For SLC there are two cell states -- an uncharged cell represents a "1"
 * and a charged cell represents "0". Programming can only deposit charge
 * on a cell and erasing can only remove charge. Therefore, "programming" a
 * cell to 1 is actually a no-op.
 *
 * So, there's no datasheet which spells this out, but I suspect you just
 * set the areas you're not interested in programming to 0xff. Programming
 * can never change a written 0 back to a 1, so programming a 1 bit works
 * more like a "don't care" (= keep whatever value is already there).
 *
 * What _is_ given by the datasheets is limits on how many times you can
 * reprogram the same page without erasing it. This is an overall limit
 * called NOP (number of programs) in many datasheets. In addition to this,
 * sub-regions of the page have further limits: it's common for a 2048+64
 * byte page to be split into 8 regions, with four 512-byte main areas and
 * four 16-byte OOB areas. Usually, each subregion can only be programmed
 * once. However, you can write multiple subregions with a single program.
 *
 * Violating programming constraints could cause data loss, so we need to
 * communicate to upper layers what the limitations are here if they want
 * to use partial programming safely.
 *
 * Programming the same page more than once increases the overall stress
 * on the flash cells and can cause bitflips. For this reason, it's best
 * to keep the number of programs as low as possible. Some sources suggest
 * that programming the pages in a block in linear order is also better to
 * reduce stress, although I don't know why this would be.
 *
 * These program/read stresses can flip bits, but it's only due to residual
 * charge building up on uncharged cells; cells are not permanently damaged
 * by these kind of stresses. Erasing the block will remove the charge and
 * restore all the cells to a clean state.
 *
 * These slides are fairly informative on this subject:
 * - https://cushychicken.github.io/assets/cooke_inconvenient_truths.pdf
 *
 * 4. Bad block management
 *
 * This probably doesn't belong in the NAND layer but it seems wise to keep
 * at least a bad block table at the level of the NAND driver. Factory bad
 * block marks are usually some non-0xFF byte in the OOB area, but bad blocks
 * which develop over the device lifetime usually won't be marked; after all
 * they are unreliable, so we can't program a marking on them and expect it
 * to stick. So, most FTL systems keep a bad block table somewhere in flash
 * and update it whenever a block goes bad.
 *
 * So, in addition to a bad block marker scan, we should try to gather bad
 * block information from such tables.
 */