summaryrefslogtreecommitdiffstats
path: root/flash/uart_boot/uart_boot.c
blob: 914937305c96fbc16b2ae8d5be29b6ca8bdcfd3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// uart_boot.cpp : Defines the entry point for the console application.
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "scalar_types.h" // (U)INT8/16/32
#include "Uart.h" // platform abstraction for UART
#include "client.h" // client functions
#include "flash.h" // flash high level functions

// command line configuration: what shall we do?
struct
{
	char* szPort; // COM port to use
	bool bRecorder; // it's a recorder
	bool bArchos; // use the Archos monitor to load, instead of UART boot
	bool bSpindown; // spindown the harddisk
	bool bReadID; // read manufacturer+device ID
	char* szFlashfile; // file to be programmed
	char* szDumpfile; // file to dump into
	char* szExecfile; // file with the executable
	bool bTest; // debug action
	bool bHold; // hold power (for FMs & V2s)
	bool bBlink; // blink red LED
	bool bNoDownload;
} gCmd;



int ProcessCmdLine(int argc, char* argv[])
{
	argc--; // exclude our name
	argv++;

	memset(&gCmd, 0, sizeof(gCmd));

	if (argc == 0)
	{
		printf("Usage: uart_boot [-option {filename}]\n");
		printf("  uses activated UART boot mod, box has to be fresh started\n");
		printf("The order of the options does not matter, one letter is sufficient.\n");
		printf("Possible options are (in the order of later processing):\n");
		printf("-port <name of COM port to use>\n");
		printf("-recorder  (this is a recorder/FM, default is player if not specified)\n");
		printf("-archos  (use Archos bootloader, this one needs powerup while program waits)\n");
		printf("-nodownload  (no MiniMon download, it's already active)\n");
		printf("-hold  (hold the power, useful for FMs and V2s, so you can release ON)\n");
		printf("-spindown  (spindown the harddisk, else it stays on by default)\n");
		printf("-id  (read manufacturer and device ID of flash, no checks)\n");
		printf("-flash <filename of binary to program into flash>\n");
		printf("-dump <filename to write flash content to>\n");
		printf("-exec <filename of executable for 0x09000000:0x09000200>\n");
		printf("-test  (some test action currently under development, don't use!)\n");
		printf("-blink (blink red LED forever, meant as diagnostics)\n");
		printf("\n");
		printf("Examples:\n");
		printf("uart_boot -r -p COM1 -s -f flashfile.bin -d dumpfile.bin\n");
		printf("  recorder on COM1, spindown HD, program and dump (for e.g. offline verify)\n");
		printf("uart_boot -r -p COM2 -e rockbox.bin\n");
		printf("  recorder on COM2, load Rockbox from file and start it\n");
		exit (0);
	}


	while (argc)
	{
		if (!strncmp("-port", *argv, 2))
		{
			gCmd.szPort = *++argv;
			if (--argc <= 0 || **argv == '-')
			{	
				printf("No argument given for option %s, aborting.\n", argv[-1]);
				exit (-2);
			}
		}
		else if (!strncmp("-recorder", *argv, 2))
		{
			gCmd.bRecorder = true;
		}
		else if (!strncmp("-archos", *argv, 2))
		{
			gCmd.bArchos = true;
		}
		else if (!strncmp("-nodownload", *argv, 2))
		{
			gCmd.bNoDownload = true;
		}
		else if (!strncmp("-spindown", *argv, 2))
		{
			gCmd.bSpindown = true;
		}
		else if (!strncmp("-id", *argv, 2))
		{
			gCmd.bReadID = true;
		}
		else if (!strncmp("-flash", *argv, 2))
		{
			gCmd.szFlashfile = *++argv;
			if (--argc <= 0 || **argv == '-')
			{	
				printf("No argument given for option %s, aborting.\n", argv[-1]);
				exit (-2);
			}
		}
		else if (!strncmp("-dump", *argv, 2))
		{
			gCmd.szDumpfile = *++argv;
			if (--argc <= 0 || **argv == '-')
			{	
				printf("No argument given for option %s, aborting.\n", argv[-1]);
				exit (-3);
			}
		}
		else if (!strncmp("-exec", *argv, 2))
		{
			gCmd.szExecfile = *++argv;
			if (--argc <= 0 || **argv == '-')
			{	
				printf("No argument given for option %s, aborting.\n", argv[-1]);
				exit (-4);
			}
		}
		else if (!strncmp("-test", *argv, 2))
		{
			gCmd.bTest = true;
		}
		else if (!strncmp("-hold", *argv, 2))
		{
			gCmd.bHold = true;
		}
		else if (!strncmp("-blink", *argv, 2))
		{
			gCmd.bBlink = true;
		}
		else
		{
			printf("Unknown option %s, aborting. Use 'uart_boot' without options for help.\n", *argv);
			exit(-1);
		}

		argv++;
		argc--;
	}
	
	return 0;
}


int main(int argc, char* argv[])
{
	tUartHandle serial_handle;
	UINT16 reg;
	FILE* pFile;
	size_t size;
	static UINT8 abFirmware[256*1024]; // blocksize
	memset(abFirmware, 0xFF, sizeof(abFirmware));

	ProcessCmdLine(argc, argv); // what to do

	if (!gCmd.szPort)
	{
		printf("No serial port given, use 'uart_boot' without parameters for options.\n");
		exit(-1);
	}

	serial_handle = UartOpen(gCmd.szPort); // opening serial port
	if (serial_handle == NULL)
	{
		printf("Cannot open port %s\n", gCmd.szPort);
		return -1;
	}
		
	if (gCmd.bNoDownload)
	{	// just set our speed
		if (!UartConfig(serial_handle, gCmd.bRecorder ? 115200 : 38400, eNOPARITY, eONESTOPBIT, 8))
		{
			printf("Error setting up COM params\n");
			exit(1);
		}
	}
	else
	{	// download the monitor program
		if (gCmd.bArchos)
		{
			printf("Waiting for box startup to download monitor...");
			DownloadArchosMonitor(serial_handle, "minimon_archos.bin"); // load the monitor image
			printf("\b\b\b done.\n");
		}
		else
		{
			printf("Downloading monitor...");
			DownloadMonitor(serial_handle, gCmd.bRecorder, "minimon.bin"); // load the monitor image
			// From now on, we can talk to the box.
			printf("\b\b\b done.\n");

			if (gCmd.bRecorder)
			{	// we can be faster
				SetTargetBaudrate(serial_handle, 11059200, 115200); // set to 115200
			}
            else
            {
				SetTargetBaudrate(serial_handle, 12000000, 38400); // set to 38400
            }
		}
	}


	// do the action
	if (gCmd.bHold)
	{
		// hold power for FM
		reg = ReadHalfword(serial_handle, 0x05FFFFC2); // PBDR
		reg |= 0x0020; // set PB5 to keep power
		WriteHalfword(serial_handle, 0x05FFFFC2, reg);

		reg = ReadHalfword(serial_handle, 0x05FFFFC6); // PBIOR
		reg |= 0x0020; // make PB5 an output
		WriteHalfword(serial_handle, 0x05FFFFC6, reg);
		printf("Power hold, you can release ON button now.\n");
	}


	if (gCmd.bSpindown)
	{
		// power down the disk
        if (gCmd.bRecorder)
        {   // Recorder (V1+V2) and FM have disk power control on PA5
		    reg = ReadHalfword(serial_handle, 0x05FFFFCA); // PACR2
		    reg &= ~0x0400; // clear bit 10: GPIO
		    WriteHalfword(serial_handle, 0x05FFFFCA, reg);

		    reg = ReadHalfword(serial_handle, 0x05FFFFC4); // PAIOR
		    reg |= 0x0020; // set bit 5: output
		    WriteHalfword(serial_handle, 0x05FFFFC4, reg);

		    reg = ReadHalfword(serial_handle, 0x05FFFFC0); // PADR
		    reg &= ~0x0020; // clear PA5 to power down
		    WriteHalfword(serial_handle, 0x05FFFFC0, reg);
        }
        else
        {   // new Players have disk power control on PB4
		    reg = ReadHalfword(serial_handle, 0x05FFFFC4); // PBIOR
		    reg |= 0x0010; // set bit 4: output
		    WriteHalfword(serial_handle, 0x05FFFFC6, reg);

		    reg = ReadHalfword(serial_handle, 0x05FFFFC0); // PBDR
		    reg &= ~0x0010; // clear PB4 to power down
		    WriteHalfword(serial_handle, 0x05FFFFC2, reg);
        }
		printf("Harddisk powered down.\n");
	}


	if (gCmd.bReadID)
	{
		UINT8 bMan, bID;
		ReadID(serial_handle, 0x02000000, &bMan, &bID);
		printf("Manufacturer ID = 0x%02X, Device ID = 0x%02X\n", bMan, bID);
	}


	if (gCmd.szFlashfile)
	{
		// flash a firmware file
		printf("Flashing file %s...", gCmd.szFlashfile);
		pFile = fopen(gCmd.szFlashfile, "rb");
		if (pFile == NULL)
		{
			printf("\nFlash file %s not found, exiting.\n", gCmd.szFlashfile);
			return -2;
		}
		size = fread(abFirmware, 1, sizeof(abFirmware), pFile);
		fclose (pFile);
		
		EraseChip(serial_handle, 0x02000000);
		FlashByteMultiple(serial_handle, 0x02000000, size, abFirmware);
		printf("\b\b\b done.\n");
	}


	if (gCmd.szDumpfile)
	{
		// dump the flash content
		printf("Writing flash dump into file %s...", gCmd.szDumpfile);
		ReadByteMultiple(serial_handle, 0x02000000, sizeof(abFirmware), abFirmware);
		pFile = fopen(gCmd.szDumpfile, "wb");
		if (pFile == NULL)
		{
			printf("\nDump file %s cannot be opened, exiting.\n", gCmd.szDumpfile);
			return -3;
		}
		fwrite(abFirmware, 1, sizeof(abFirmware), pFile);
		fclose (pFile);
		printf("\b\b\b done.\n");
	}


	if (gCmd.szExecfile)
	{
		UINT32 size;
		
		printf("Downloading program...");

		// init the DRAM controller like the flash boot does
		reg = ReadHalfword(serial_handle, 0x05FFFFCA); // PACR2
		reg &= 0xFFFB; // PA1 config: /RAS
		reg |= 0x0008;
		WriteHalfword(serial_handle, 0x05FFFFCA, reg); // PACR2
		reg = 0xAFFF; // CS1, CS3 config: /CASH. /CASL
		WriteHalfword(serial_handle, 0x05FFFFEE, reg); // CASCR
		reg = ReadHalfword(serial_handle, 0x05FFFFA0); // BCR  
		reg |= 0x8000; // DRAM enable, default bus 
		WriteHalfword(serial_handle, 0x05FFFFA0, reg); // BCR 
		reg = ReadHalfword(serial_handle, 0x05FFFFA2); // WCR1	 
		reg &= 0xFDFD; // 1-cycle CAS 
		WriteHalfword(serial_handle, 0x05FFFFA2, reg); // WCR1	
		reg = 0x0E00; // CAS 35%, multiplexed, 10 bit row addr.
		WriteHalfword(serial_handle, 0x05FFFFA8, reg); // DCR
		reg = 0x5AB0; // refresh, 4 cycle waitstate
		WriteHalfword(serial_handle, 0x05FFFFAC, reg); // RCR
		reg = 0x9605; // refresh constant
		WriteHalfword(serial_handle, 0x05FFFFB2, reg); // RTCOR
		reg = 0xA518; // phi/32
		WriteHalfword(serial_handle, 0x05FFFFAE, reg); // RTCSR


		// download Rockbox/gdb
		pFile = fopen(gCmd.szExecfile, "rb");
		if (pFile == NULL)
		{
			printf("\nExecutable file %s cannot be opened, exiting.\n", gCmd.szExecfile);
			return -3;
		}

		size = fread(abFirmware, 1, sizeof(abFirmware), pFile);
		WriteByteMultiple(serial_handle, 0x09000000, size, abFirmware);
		fclose (pFile);
		printf("\b\b\b done.\n");

		// start rockbox/gdb
		printf("Starting program...");
		Execute(serial_handle, 0x09000200, false);
		printf("\b\b\b done.\n");
	}


	if (gCmd.bTest) // DRAM test
	{
        static UINT8 abRam[2*1024*1024]; // DRAM copy, not on stack
        int i;
        int fails;
		
        // init the DRAM controller like the flash boot does
		reg = ReadHalfword(serial_handle, 0x05FFFFCA); // PACR2
		reg &= 0xFFFB; // PA1 config: /RAS
		reg |= 0x0008;
		WriteHalfword(serial_handle, 0x05FFFFCA, reg); // PACR2
		reg = 0xAFFF; // CS1, CS3 config: /CASH. /CASL
		WriteHalfword(serial_handle, 0x05FFFFEE, reg); // CASCR
		reg = ReadHalfword(serial_handle, 0x05FFFFA0); // BCR  
		reg |= 0x8000; // DRAM enable, default bus 
		WriteHalfword(serial_handle, 0x05FFFFA0, reg); // BCR 
		reg = ReadHalfword(serial_handle, 0x05FFFFA2); // WCR1	 
		reg &= 0xFDFD; // 1-cycle CAS 
		WriteHalfword(serial_handle, 0x05FFFFA2, reg); // WCR1	
		reg = 0x0E00; // CAS 35%, multiplexed, 10 bit row addr.
		WriteHalfword(serial_handle, 0x05FFFFA8, reg); // DCR
		reg = 0x5AB0; // refresh, 4 cycle waitstate
		WriteHalfword(serial_handle, 0x05FFFFAC, reg); // RCR
		reg = 0x9605; // refresh constant
		WriteHalfword(serial_handle, 0x05FFFFB2, reg); // RTCOR
		reg = 0xA518; // phi/32
		WriteHalfword(serial_handle, 0x05FFFFAE, reg); // RTCSR

        fails = 0;
        memset(abRam, 0xFF, sizeof(abRam));
		printf("writing 0xFF pattern\n");
		WriteByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
		printf("testing marching 0x00\n");
        for (i=0; i<sizeof(abRam); i++)
        {
       		UINT8 byte; 
			WriteByte(serial_handle, 0x09000000 + i, 0x00);
            byte = ReadByte(serial_handle, 0x09000000 + i);
			WriteByte(serial_handle, 0x09000000 + i, 0xFF);

            if (byte != 0x00)
            {
                printf("RAM at offset 0x%06X is 0x%02X instead of 0x%02X\n", i, byte, 0x00);
                fails++;
            }

        }
        printf("%d failures\n", fails);
        
        fails = 0;
        memset(abRam, 0x00, sizeof(abRam));
		printf("writing 0x00 pattern\n");
		WriteByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
		printf("testing marching 0xFF\n");
        for (i=0; i<sizeof(abRam); i++)
        {
       		UINT8 byte; 
			WriteByte(serial_handle, 0x09000000 + i, 0xFF);
            byte = ReadByte(serial_handle, 0x09000000 + i);
			WriteByte(serial_handle, 0x09000000 + i, 0x00);

            if (byte != 0xFF)
            {
                printf("RAM at offset 0x%06X is 0x%02X instead of 0x%02X\n", i, byte, 0xFF);
                fails++;
            }

        }
        printf("%d failures\n", fails);
        
        fails = 0;
        memset(abRam, 0xAA, sizeof(abRam));
		printf("writing 0xAA pattern\n");
		WriteByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
		printf("reading back\n");
		ReadByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
        for (i=0; i<sizeof(abRam); i++)
        {
            if (abRam[i] != 0xAA)
            {
                printf("RAM at offset 0x%06X is 0x%02X instead of 0x%02X\n", i, abRam[i], 0xAA);
                fails++;
            }

        }
        printf("%d failures\n", fails);

        fails = 0;
        memset(abRam, 0x55, sizeof(abRam));
		printf("writing 0x55 pattern\n");
		WriteByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
		printf("reading back\n");
		ReadByteMultiple(serial_handle, 0x09000000, sizeof(abRam), abRam);
        for (i=0; i<sizeof(abRam); i++)
        {
            if (abRam[i] != 0x55)
            {
                printf("RAM at offset 0x%06X is 0x%02X instead of 0x%02X\n", i, abRam[i], 0x55);
                fails++;
            }

        }
        printf("%d failures\n", fails);
    }


	if (gCmd.bBlink)
	{
		// blinking LED
		UINT8 byte;
		printf("Flashing red LED forever... (stop with Ctrl-C)\n");
		byte = ReadByte(serial_handle, 0x05FFFFC3);
		while (1)
		{
			byte ^= 0x40;
			WriteByte(serial_handle, 0x05FFFFC3, byte);
			Sleep(200);
		}
	}

	return 0;
}