1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
//cRSID CPU-emulation
void cRSID_initCPU (cRSID_CPUinstance* CPU, unsigned short mempos) {
CPU->PC = mempos; CPU->A = 0; CPU->X = 0; CPU->Y = 0; CPU->ST = 0x04; CPU->SP = 0xFF; CPU->PrevNMI = 0;
}
unsigned char cRSID_emulateCPU (void) { //the CPU emulation for SID/PRG playback (ToDo: CIA/VIC-IRQ/NMI/RESET vectors, BCD-mode)
enum StatusFlagBitValues { N=0x80, V=0x40, B=0x10, D=0x08, I=0x04, Z=0x02, C=0x01 };
static const unsigned char FlagSwitches[]={0x01,0x21,0x04,0x24,0x00,0x40,0x08,0x28}, BranchFlags[]={0x80,0x40,0x01,0x02};
static cRSID_C64instance* const C64 = &cRSID_C64; //could be a parameter but function-call is faster this way if only 1 main CPU exists
static cRSID_CPUinstance* const CPU = &C64->CPU;
static char Cycles, SamePage;
static unsigned char IR, ST, X, Y;
static short int A, SP, T;
static unsigned int PC, Addr, PrevPC;
inline void loadReg (void) { PC = CPU->PC; SP = CPU->SP; ST = CPU->ST; A = CPU->A; X = CPU->X; Y = CPU->Y; }
inline void storeReg (void) { CPU->PC = PC; CPU->SP = SP; CPU->ST = ST; CPU->A = A; CPU->X = X; CPU->Y = Y; }
inline unsigned char rd (register unsigned short address) {
static unsigned char value;
value = *cRSID_getMemReadPtr(address);
if (C64->RealSIDmode) {
if ( C64->RAMbank[1] & 3 ) {
if (address==0xDC0D) { cRSID_acknowledgeCIAIRQ( &C64->CIA[1] ); }
else if (address==0xDD0D) { cRSID_acknowledgeCIAIRQ( &C64->CIA[2] ); }
}
}
return value;
}
inline void wr (register unsigned short address, register unsigned char data) {
*cRSID_getMemWritePtr(address)=data;
if ( C64->RealSIDmode && (C64->RAMbank[1] & 3) ) {
//if(data&1) { //only writing 1 to $d019 bit0 would acknowledge, not any value (but RMW instructions write $d019 back before mod.)
if (address==0xD019) { cRSID_acknowledgeVICrasterIRQ( &C64->VIC ); }
//}
}
}
inline void wr2 (register unsigned short address, register unsigned char data) { //PSID-hack specific memory-write
static int Tmp;
*cRSID_getMemWritePtr(address)=data;
if ( C64->RAMbank[1] & 3 ) {
if (C64->RealSIDmode) {
if (address==0xDC0D) cRSID_writeCIAIRQmask( &C64->CIA[1], data );
else if (address==0xDD0D) cRSID_writeCIAIRQmask( &C64->CIA[2], data );
else if (address==0xDD0C) C64->IObankRD[address]=data; //mirror WR to RD (e.g. Wonderland_XIII_tune_1.sid)
//#ifdef CRSID_PLATFORM_PC //just for info displayer
// else if (address==0xDC05 || address==0xDC04) C64->FrameCycles = ( (C64->IObankWR[0xDC04] + (C64->IObankWR[0xDC05]<<8)) );
//#endif
else if(address==0xD019 && data&1) { //only writing 1 to $d019 bit0 would acknowledge
cRSID_acknowledgeVICrasterIRQ( &C64->VIC );
}
}
else {
switch (address) {
case 0xDC05: case 0xDC04:
if (C64->TimerSource ) { //dynamic CIA-setting (Galway/Rubicon workaround)
C64->FrameCycles = ( (C64->IObankWR[0xDC04] + (C64->IObankWR[0xDC05]<<8)) ); //<< 4) / C64->SampleClockRatio;
}
break;
case 0xDC08: C64->IObankRD[0xDC08] = data; break; //refresh TOD-clock
case 0xDC09: C64->IObankRD[0xDC09] = data; break; //refresh TOD-clock
case 0xD012: //dynamic VIC IRQ-rasterline setting (Microprose Soccer V1 workaround)
if (C64->PrevRasterLine>=0) { //was $d012 set before? (or set only once?)
if (C64->IObankWR[0xD012] != C64->PrevRasterLine) {
Tmp = C64->IObankWR[0xD012] - C64->PrevRasterLine;
if (Tmp<0) Tmp += C64->VIC.RasterLines;
C64->FrameCycleCnt = C64->FrameCycles - Tmp * C64->VIC.RasterRowCycles;
}
}
C64->PrevRasterLine = C64->IObankWR[0xD012];
break;
}
}
}
}
inline void addrModeImmediate (void) { ++PC; Addr=PC; Cycles=2; } //imm.
inline void addrModeZeropage (void) { ++PC; Addr=rd(PC); Cycles=3; } //zp
inline void addrModeAbsolute (void) { ++PC; Addr = rd(PC); ++PC; Addr += rd(PC)<<8; Cycles=4; } //abs
inline void addrModeZeropageXindexed (void) { ++PC; Addr = (rd(PC) + X) & 0xFF; Cycles=4; } //zp,x (with zeropage-wraparound of 6502)
inline void addrModeZeropageYindexed (void) { ++PC; Addr = (rd(PC) + Y) & 0xFF; Cycles=4; } //zp,y (with zeropage-wraparound of 6502)
inline void addrModeXindexed (void) { // abs,x (only STA is 5 cycles, others are 4 if page not crossed, RMW:7)
++PC; Addr = rd(PC) + X; ++PC; SamePage = (Addr <= 0xFF); Addr += rd(PC)<<8; Cycles=5;
}
inline void addrModeYindexed (void) { // abs,y (only STA is 5 cycles, others are 4 if page not crossed, RMW:7)
++PC; Addr = rd(PC) + Y; ++PC; SamePage = (Addr <= 0xFF); Addr += rd(PC)<<8; Cycles=5;
}
inline void addrModeIndirectYindexed (void) { // (zp),y (only STA is 6 cycles, others are 5 if page not crossed, RMW:8)
++PC; Addr = rd(rd(PC)) + Y; SamePage = (Addr <= 0xFF); Addr += rd( (rd(PC)+1)&0xFF ) << 8; Cycles=6;
}
inline void addrModeXindexedIndirect (void) { // (zp,x)
++PC; Addr = ( rd(rd(PC)+X)&0xFF ) + ( ( rd(rd(PC)+X+1)&0xFF ) << 8 ); Cycles=6;
}
inline void clrC (void) { ST &= ~C; } //clear Carry-flag
inline void setC (unsigned char expr) { ST &= ~C; ST |= (expr!=0); } //set Carry-flag if expression is not zero
inline void clrNZC (void) { ST &= ~(N|Z|C); } //clear flags
inline void clrNVZC (void) { ST &= ~(N|V|Z|C); } //clear flags
inline void setNZbyA (void) { ST &= ~(N|Z); ST |= ((!A)<<1) | (A&N); } //set Negative-flag and Zero-flag based on result in Accumulator
inline void setNZbyT (void) { T&=0xFF; ST &= ~(N|Z); ST |= ((!T)<<1) | (T&N); }
inline void setNZbyX (void) { ST &= ~(N|Z); ST |= ((!X)<<1) | (X&N); } //set Negative-flag and Zero-flag based on result in X-register
inline void setNZbyY (void) { ST &= ~(N|Z); ST |= ((!Y)<<1) | (Y&N); } //set Negative-flag and Zero-flag based on result in Y-register
inline void setNZbyM (void) { ST &= ~(N|Z); ST |= ((!rd(Addr))<<1) | (rd(Addr)&N); } //set Negative-flag and Zero-flag based on result at Memory-Address
inline void setNZCbyAdd (void) { ST &= ~(N|Z|C); ST |= (A&N)|(A>255); A&=0xFF; ST|=(!A)<<1; } //after increase/addition
inline void setVbyAdd (unsigned char M) { ST &= ~V; ST |= ( (~(T^M)) & (T^A) & N ) >> 1; } //calculate V-flag from A and T (previous A) and input2 (Memory)
inline void setNZCbySub (signed short* obj) { ST &= ~(N|Z|C); ST |= (*obj&N) | (*obj>=0); *obj&=0xFF; ST |= ((!(*obj))<<1); }
inline void push (unsigned char value) { C64->RAMbank[0x100+SP] = value; --SP; SP&=0xFF; } //push a value to stack
inline unsigned char pop (void) { ++SP; SP&=0xFF; return C64->RAMbank[0x100+SP]; } //pop a value from stack
loadReg(); PrevPC=PC;
IR = rd(PC); Cycles=2; SamePage=0; //'Cycles': ensure smallest 6510 runtime (for implied/register instructions)
if(IR&1) { //nybble2: 1/5/9/D:accu.instructions, 3/7/B/F:illegal opcodes
switch ( (IR & 0x1F) >> 1 ) { //value-forming to cause jump-table //PC wraparound not handled inside to save codespace
case 0: case 1: addrModeXindexedIndirect(); break; //(zp,x)
case 2: case 3: addrModeZeropage(); break;
case 4: case 5: addrModeImmediate(); break;
case 6: case 7: addrModeAbsolute(); break;
case 8: case 9: addrModeIndirectYindexed(); break; //(zp),y (5..6 cycles, 8 for R-M-W)
case 0xA: addrModeZeropageXindexed(); break; //zp,x
case 0xB: if ((IR&0xC0)!=0x80) addrModeZeropageXindexed(); //zp,x for illegal opcodes
else addrModeZeropageYindexed(); //zp,y for LAX/SAX illegal opcodes
break;
case 0xC: case 0xD: addrModeYindexed(); break;
case 0xE: addrModeXindexed(); break;
case 0xF: if ((IR&0xC0)!=0x80) addrModeXindexed(); //abs,x for illegal opcodes
else addrModeYindexed(); //abs,y for LAX/SAX illegal opcodes
break;
}
Addr&=0xFFFF;
switch ( (IR & 0xE0) >> 5 ) { //value-forming to cause gapless case-values and faster jump-table creation from switch-case
case 0: if ( (IR&0x1F) != 0xB ) { //ORA / SLO(ASO)=ASL+ORA
if ( (IR&3) == 3 ) { clrNZC(); setC(rd(Addr)>=N); wr( Addr, rd(Addr)<<1 ); Cycles+=2; } //for SLO
else Cycles -= SamePage;
A |= rd(Addr); setNZbyA(); //ORA
}
else { A&=rd(Addr); setNZbyA(); setC(A>=N); } //ANC (AND+Carry=bit7)
break;
case 1: if ( (IR&0x1F) != 0xB ) { //AND / RLA (ROL+AND)
if ( (IR&3) == 3 ) { //for RLA
T = (rd(Addr)<<1) + (ST&C); clrNZC(); setC(T>255); T&=0xFF; wr(Addr,T); Cycles+=2;
}
else Cycles -= SamePage;
A &= rd(Addr); setNZbyA(); //AND
}
else { A&=rd(Addr); setNZbyA(); setC(A>=N); } //ANC (AND+Carry=bit7)
break;
case 2: if ( (IR&0x1F) != 0xB ) { //EOR / SRE(LSE)=LSR+EOR
if ( (IR&3) == 3 ) { clrNZC(); setC(rd(Addr)&1); wr(Addr,rd(Addr)>>1); Cycles+=2; } //for SRE
else Cycles -= SamePage;
A ^= rd(Addr); setNZbyA(); //EOR
}
else { A&=rd(Addr); setC(A&1); A>>=1; A&=0xFF; setNZbyA(); } //ALR(ASR)=(AND+LSR)
break;
case 3: if ( (IR&0x1F) != 0xB ) { //RRA (ROR+ADC) / ADC
if( (IR&3) == 3 ) { //for RRA
T = (rd(Addr)>>1) + ((ST&C)<<7); clrNZC(); setC(T&1); wr(Addr,T); Cycles+=2;
}
else Cycles -= SamePage;
T=A; A += rd(Addr)+(ST&C); setNZCbyAdd(); setVbyAdd(rd(Addr)); //ADC
}
else { // ARR (AND+ROR, bit0 not going to C, but C and bit7 get exchanged.)
A &= rd(Addr); T += rd(Addr) + (ST&C);
clrNVZC(); setC(T>255); setVbyAdd(rd(Addr)); //V-flag set by intermediate ADC mechanism: (A&mem)+mem
T=A; A = (A>>1) + ((ST&C)<<7); setC(T>=N); setNZbyA();
}
break;
case 4: if ( (IR&0x1F) == 0xB ) { A = X & rd(Addr); setNZbyA(); } //XAA (TXA+AND), highly unstable on real 6502!
else if ( (IR&0x1F) == 0x1B ) { SP = A&X; wr( Addr, SP&((Addr>>8)+1) ); } //TAS(SHS) (SP=A&X, mem=S&H} - unstable on real 6502
else { wr2( Addr, A & (((IR&3)==3)? X:0xFF) ); } //STA / SAX (at times same as AHX/SHX/SHY) (illegal)
break;
case 5: if ( (IR&0x1F) != 0x1B ) { A=rd(Addr); if((IR&3)==3) X=A; } //LDA / LAX (illegal, used by my 1 rasterline player) (LAX #imm is unstable on C64)
else { A=X=SP = rd(Addr) & SP; } //LAS(LAR)
setNZbyA(); Cycles -= SamePage;
break;
case 6: if( (IR&0x1F) != 0xB ) { // CMP / DCP(DEC+CMP)
if ( (IR&3) == 3 ) { wr(Addr,rd(Addr)-1); Cycles+=2;} //DCP
else Cycles -= SamePage;
T = A-rd(Addr);
}
else { X = T = (A&X) - rd(Addr); } //SBX(AXS) //SBX (AXS) (CMP+DEX at the same time)
setNZCbySub(&T);
break;
case 7: if( (IR&3)==3 && (IR&0x1F)!=0xB ) { wr( Addr, rd(Addr)+1 ); Cycles+=2; } //ISC(ISB)=INC+SBC / SBC
else Cycles -= SamePage;
T=A; A -= rd(Addr) + !(ST&C);
setNZCbySub(&A); setVbyAdd(~rd(Addr));
break;
}
}
else if (IR&2) { //nybble2: 2:illegal/LDX, 6:A/X/INC/DEC, A:Accu-shift/reg.transfer/NOP, E:shift/X/INC/DEC
switch (IR & 0x1F) { //Addressing modes
case 2: addrModeImmediate(); break;
case 6: addrModeZeropage(); break;
case 0xE: addrModeAbsolute(); break;
case 0x16: if ( (IR&0xC0) != 0x80 ) addrModeZeropageXindexed(); //zp,x
else addrModeZeropageYindexed(); //zp,y
break;
case 0x1E: if ( (IR&0xC0) != 0x80 ) addrModeXindexed(); //abs,x
else addrModeYindexed(); //abs,y
break;
}
Addr&=0xFFFF;
switch ( (IR & 0xE0) >> 5 ) {
case 0: clrC(); case 1:
if((IR&0xF)==0xA) { A = (A<<1) + (ST&C); setNZCbyAdd(); } //ASL/ROL (Accu)
else { T = (rd(Addr)<<1) + (ST&C); setC(T>255); setNZbyT(); wr(Addr,T); Cycles+=2; } //RMW (Read-Write-Modify)
break;
case 2: clrC(); case 3:
if((IR&0xF)==0xA) { T=A; A=(A>>1)+((ST&C)<<7); setC(T&1); A&=0xFF; setNZbyA(); } //LSR/ROR (Accu)
else { T = (rd(Addr)>>1) + ((ST&C)<<7); setC(rd(Addr)&1); setNZbyT(); wr(Addr,T); Cycles+=2; } //memory (RMW)
break;
case 4: if (IR&4) {wr2(Addr,X);} //STX
else if(IR&0x10) SP=X; //TXS
else { A=X; setNZbyA(); } //TXA
break;
case 5: if ( (IR&0xF) != 0xA ) { X=rd(Addr); Cycles -= SamePage; } //LDX
else if (IR & 0x10) X=SP; //TSX
else X=A; //TAX
setNZbyX();
break;
case 6: if (IR&4) { wr(Addr,rd(Addr)-1); setNZbyM(); Cycles+=2; } //DEC
else { --X; setNZbyX(); } //DEX
break;
case 7: if (IR&4) { wr(Addr,rd(Addr)+1); setNZbyM(); Cycles+=2; } //INC/NOP
break;
}
}
else if ( (IR & 0xC) == 8 ) { //nybble2: 8:register/statusflag
if ( IR&0x10 ) {
if ( IR == 0x98 ) { A=Y; setNZbyA(); } //TYA
else { //CLC/SEC/CLI/SEI/CLV/CLD/SED
if (FlagSwitches[IR>>5] & 0x20) ST |= (FlagSwitches[IR>>5] & 0xDF);
else ST &= ~( FlagSwitches[IR>>5] & 0xDF );
}
}
else {
switch ( (IR & 0xF0) >> 5 ) {
case 0: push(ST); Cycles=3; break; //PHP
case 1: ST=pop(); Cycles=4; break; //PLP
case 2: push(A); Cycles=3; break; //PHA
case 3: A=pop(); setNZbyA(); Cycles=4; break; //PLA
case 4: --Y; setNZbyY(); break; //DEY
case 5: Y=A; setNZbyY(); break; //TAY
case 6: ++Y; setNZbyY(); break; //INY
case 7: ++X; setNZbyX(); break; //INX
}
}
}
else { //nybble2: 0: control/branch/Y/compare 4: Y/compare C:Y/compare/JMP
if ( (IR&0x1F) == 0x10 ) { //BPL/BMI/BVC/BVS/BCC/BCS/BNE/BEQ relative branch
++PC;
T=rd(PC); if (T & 0x80) T-=0x100;
if (IR & 0x20) {
if (ST & BranchFlags[IR>>6]) { PC+=T; Cycles=3; }
}
else {
if ( !(ST & BranchFlags[IR>>6]) ) { PC+=T; Cycles=3; } //plus 1 cycle if page is crossed?
}
}
else { //nybble2: 0:Y/control/Y/compare 4:Y/compare C:Y/compare/JMP
switch (IR&0x1F) { //Addressing modes
case 0: addrModeImmediate(); break; //imm. (or abs.low for JSR/BRK)
case 4: addrModeZeropage(); break;
case 0xC: addrModeAbsolute(); break;
case 0x14: addrModeZeropageXindexed(); break; //zp,x
case 0x1C: addrModeXindexed(); break; //abs,x
}
Addr&=0xFFFF;
switch ( (IR & 0xE0) >> 5 ) {
case 0: if( !(IR&4) ) { //BRK / NOP-absolute/abs,x/zp/zp,x
push((PC+2-1)>>8); push((PC+2-1)&0xFF); push(ST|B); ST |= I; //BRK
PC = rd(0xFFFE) + (rd(0xFFFF)<<8) - 1; Cycles=7;
}
else if (IR == 0x1C) Cycles -= SamePage; //NOP abs,x
break;
case 1: if (IR & 0xF) { //BIT / NOP-abs,x/zp,x
if ( !(IR&0x10) ) { ST &= 0x3D; ST |= (rd(Addr)&0xC0) | ( (!(A&rd(Addr))) << 1 ); } //BIT
else if (IR == 0x3C) Cycles -= SamePage; //NOP abs,x
}
else { //JSR
push((PC+2-1)>>8); push((PC+2-1)&0xFF);
PC=rd(Addr)+rd(Addr+1)*256-1; Cycles=6;
}
break;
case 2: if (IR & 0xF) { //JMP / NOP-abs,x/zp/zp,x
if (IR == 0x4C) { //JMP
PC = Addr-1; Cycles=3;
rd(Addr+1); //a read from jump-address highbyte is used in some tunes with jmp DD0C (e.g. Wonderland_XIII_tune_1.sid)
//if (Addr==PrevPC) {storeReg(); C64->Returned=1; return 0xFF;} //turn self-jump mainloop (after init) into idle time
}
else if (IR==0x5C) Cycles -= SamePage; //NOP abs,x
}
else { //RTI
ST=pop(); T=pop(); PC = (pop()<<8) + T - 1; Cycles=6;
if (C64->Returned && SP>=0xFF) { ++PC; storeReg(); return 0xFE; }
}
break;
case 3: if (IR & 0xF) { //JMP() (indirect) / NOP-abs,x/zp/zp,x
if (IR == 0x6C) { //JMP() (indirect)
PC = rd( (Addr&0xFF00) + ((Addr+1)&0xFF) ); //(with highbyte-wraparound bug)
PC = (PC<<8) + rd(Addr) - 1; Cycles=5;
}
else if (IR == 0x7C) Cycles -= SamePage; //NOP abs,x
}
else { //RTS
if (SP>=0xFF) {storeReg(); C64->Returned=1; return 0xFF;} //Init returns, provide idle-time between IRQs
T=pop(); PC = (pop()<<8) + T; Cycles=6;
}
break;
case 4: if (IR & 4) { wr2( Addr, Y ); } //STY / NOP #imm
break;
case 5: Y=rd(Addr); setNZbyY(); Cycles -= SamePage; //LDY
break;
case 6: if ( !(IR&0x10) ) { //CPY / NOP abs,x/zp,x
T=Y-rd(Addr); setNZCbySub(&T); //CPY
}
else if (IR==0xDC) Cycles -= SamePage; //NOP abs,x
break;
case 7: if ( !(IR&0x10) ) { //CPX / NOP abs,x/zp,x
T=X-rd(Addr); setNZCbySub(&T); //CPX
}
else if (IR==0xFC) Cycles -= SamePage; //NOP abs,x
break;
}
}
}
++PC; //PC&=0xFFFF;
storeReg();
if (!C64->RealSIDmode) { //substitute KERNAL IRQ-return in PSID (e.g. Microprose Soccer)
if ( (C64->RAMbank[1]&3)>1 && PrevPC<0xE000 && (PC==0xEA31 || PC==0xEA81 || PC==0xEA7E) ) return 0xFE;
}
return Cycles;
}
//handle entering into IRQ and NMI interrupt
static inline char cRSID_handleCPUinterrupts (cRSID_CPUinstance* CPU) {
enum StatusFlagBitValues { B=0x10, I=0x04 };
inline void push (unsigned char value) { CPU->C64->RAMbank[0x100+CPU->SP] = value; --CPU->SP; CPU->SP&=0xFF; } //push a value to stack
if (CPU->C64->NMI > CPU->PrevNMI) { //if IRQ and NMI at the same time, NMI is serviced first
push(CPU->PC>>8); push(CPU->PC&0xFF); push(CPU->ST); CPU->ST |= I;
CPU->PC = *cRSID_getMemReadPtr(0xFFFA) + (*cRSID_getMemReadPtr(0xFFFB)<<8); //NMI-vector
CPU->PrevNMI = CPU->C64->NMI;
return 1;
}
else if ( CPU->C64->IRQ && !(CPU->ST&I) ) {
push(CPU->PC>>8); push(CPU->PC&0xFF); push(CPU->ST); CPU->ST |= I;
CPU->PC = *cRSID_getMemReadPtr(0xFFFE) + (*cRSID_getMemReadPtr(0xFFFF)<<8); //maskable IRQ-vector
CPU->PrevNMI = CPU->C64->NMI;
return 1;
}
CPU->PrevNMI = CPU->C64->NMI; //prepare for NMI edge-detection
return 0;
}
|