summaryrefslogtreecommitdiffstats
path: root/lib/rbcodec/codecs/libcook/cook.c
blob: 29a1bab7d6621c0978bceed1fa86e97bd7e39533 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*
 * COOK compatible decoder
 * Copyright (c) 2003 Sascha Sommer
 * Copyright (c) 2005 Benjamin Larsson
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file cook.c
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
 * This decoder handles RealNetworks, RealAudio G2 data.
 * Cook is identified by the codec name cook in RM files.
 *
 * To use this decoder, a calling application must supply the extradata
 * bytes provided from the RM container; 8+ bytes for mono streams and
 * 16+ for stereo streams (maybe more).
 *
 * Codec technicalities (all this assume a buffer length of 1024):
 * Cook works with several different techniques to achieve its compression.
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
 * two neighboring pieces have different quantization index a smooth
 * quantization curve is used to get a smooth overlap between the different
 * pieces.
 * To get to the transformdomain Cook uses a modulated lapped transform.
 * The transform domain has 50 subbands with 20 elements each. This
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 * available.
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include "codeclib.h"

#include "cook.h"
#include "cookdata.h"

/* the different Cook versions */
#define MONO            0x1000001
#define STEREO          0x1000002
#define JOINT_STEREO    0x1000003
#define MC_COOK         0x2000000   //multichannel Cook, not supported

#define SUBBAND_SIZE    20
#define MAX_SUBPACKETS   5
//#define COOKDEBUG
#ifndef COOKDEBUG
#undef DEBUGF
#define DEBUGF(...)
#endif 

/**
 * Random bit stream generator.
 */
static inline int cook_random(COOKContext *q)
{
    q->random_state =
      q->random_state * 214013 + 2531011; /* typical RNG numbers */

    return (q->random_state/0x1000000)&1;  /*>>31*/
}
#include "cook_fixpoint.h"

/* debug functions */

#ifdef COOKDEBUG
static void dump_int_table(int* table, int size, int delimiter) {
    int i=0;
    DEBUGF("\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        DEBUGF("%d, ", table[i]);
        if ((i+1)%delimiter == 0) DEBUGF("\n[%d]: ",i+1);
    }
}

static void dump_short_table(short* table, int size, int delimiter) {
    int i=0;
    DEBUGF("\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        DEBUGF("%d, ", table[i]);
        if ((i+1)%delimiter == 0) DEBUGF("\n[%d]: ",i+1);
    }
}

#endif

/*************** init functions ***************/
/* Codebook sizes (11586 * 4 bytes in total) */
/* Used for envelope_quant_index[]. */
static VLC_TYPE vlcbuf00[ 520][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf01[ 640][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf02[ 544][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf03[ 528][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf04[ 544][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf05[ 544][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf06[ 640][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf07[ 576][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf08[ 528][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf09[ 544][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf10[ 544][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf11[ 640][2] IBSS_ATTR_COOK_VLCBUF;
static VLC_TYPE vlcbuf12[ 544][2] IBSS_ATTR_COOK_LARGE_IRAM;
/* Used for sqvh[]. */
static VLC_TYPE vlcbuf13[ 622][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf14[ 308][2] IBSS_ATTR_COOK_LARGE_IRAM; 
static VLC_TYPE vlcbuf15[ 280][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf16[1456][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf17[ 694][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf18[ 698][2] IBSS_ATTR_COOK_LARGE_IRAM;
static VLC_TYPE vlcbuf19[ 104][2] IBSS_ATTR_COOK_LARGE_IRAM;
/* Used for ccpl. */
static VLC_TYPE vlcbuf20[  88][2] IBSS_ATTR_COOK_VLCBUF;

/* Code book sizes (11586 entries in total) */
static int env_size[13] = {520,640,544, 528,544,544,640,576,528,544,544,640,544};
static int sqvh_size[7] = {622,308,280,1456,694,698,104};
static int ccpl_size    = 88;


static int init_cook_vlc_tables(COOKContext *q) {
    int i, result = 0;
    
    /* Set pointers for codebooks. */
    q->envelope_quant_index[ 0].table = vlcbuf00;
    q->envelope_quant_index[ 1].table = vlcbuf01;
    q->envelope_quant_index[ 2].table = vlcbuf02;
    q->envelope_quant_index[ 3].table = vlcbuf03;
    q->envelope_quant_index[ 4].table = vlcbuf04;
    q->envelope_quant_index[ 5].table = vlcbuf05;
    q->envelope_quant_index[ 6].table = vlcbuf06;
    q->envelope_quant_index[ 7].table = vlcbuf07;
    q->envelope_quant_index[ 8].table = vlcbuf08;
    q->envelope_quant_index[ 9].table = vlcbuf09;
    q->envelope_quant_index[10].table = vlcbuf10;
    q->envelope_quant_index[11].table = vlcbuf11;
    q->envelope_quant_index[12].table = vlcbuf12;
    q->sqvh[0].table = vlcbuf13; 
    q->sqvh[1].table = vlcbuf14;
    q->sqvh[2].table = vlcbuf15; 
    q->sqvh[3].table = vlcbuf16;
    q->sqvh[4].table = vlcbuf17; 
    q->sqvh[5].table = vlcbuf18;
    q->sqvh[6].table = vlcbuf19;
    q->ccpl.table = vlcbuf20;

    /* Init envelope VLC (13 books) */
    for (i=0 ; i<13 ; i++) {
        q->envelope_quant_index[i].table_allocated = env_size[i];
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
            envelope_quant_index_huffbits[i], 1, 1,
            envelope_quant_index_huffcodes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }

    /* Init subband VLC (7 books) */
    for (i=0 ; i<7 ; i++) {
        q->sqvh[i].table_allocated = sqvh_size[i];
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
            cvh_huffbits[i], 1, 1,
            cvh_huffcodes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
    }

    /* Init Joint-Stereo VLC (1 book) */
    if (q->nb_channels==2 && q->joint_stereo==1){
        q->ccpl.table_allocated = ccpl_size;
        result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, INIT_VLC_USE_NEW_STATIC);
        DEBUGF("Joint-stereo VLC used.\n");
    }

    DEBUGF("VLC tables initialized. Result = %d\n",result);
    return result;
}
/*************** init functions end ***********/

/**
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 * Why? No idea, some checksum/error detection method maybe.
 *
 * Out buffer size: extra bytes are needed to cope with
 * padding/misalignment.
 * Subpackets passed to the decoder can contain two, consecutive
 * half-subpackets, of identical but arbitrary size.
 *          1234 1234 1234 1234  extraA extraB
 * Case 1:  AAAA BBBB              0      0
 * Case 2:  AAAA ABBB BB--         3      3
 * Case 3:  AAAA AABB BBBB         2      2
 * Case 4:  AAAA AAAB BBBB BB--    1      5
 *
 * Nice way to waste CPU cycles.
 *
 * @param inbuffer  pointer to byte array of indata
 * @param out       pointer to byte array of outdata
 * @param bytes     number of bytes
 */
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))

static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
    int i, off;
    uint32_t c;
    const uint32_t* buf;
    uint32_t* obuf = (uint32_t*) out;
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
     * I'm too lazy though, should be something like
     * for(i=0 ; i<bitamount/64 ; i++)
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
     * Buffer alignment needs to be checked. */

    off = (intptr_t)inbuffer & 3;
    buf = (const uint32_t*) (inbuffer - off);
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
    bytes += 3 + off;
    for (i = 0; i < bytes/4; i++)
        obuf[i] = c ^ buf[i];

    return off;
}

/**
 * Fill the gain array for the timedomain quantization.
 *
 * @param q                 pointer to the COOKContext
 * @param gaininfo[9]       array of gain indexes
 */

static void decode_gain_info(GetBitContext *gb, int *gaininfo)
{
    int i, n;

    while (get_bits1(gb)) {}
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update

    i = 0;
    while (n--) {
        int index = get_bits(gb, 3);
        int gain = get_bits1(gb) ? (int)get_bits(gb, 4) - 7 : -1;

        while (i <= index) gaininfo[i++] = gain;
    }
    while (i <= 8) gaininfo[i++] = 0;
}

/**
 * Create the quant index table needed for the envelope.
 *
 * @param q                 pointer to the COOKContext
 * @param quant_index_table pointer to the array
 */

static void decode_envelope(COOKContext *q, int* quant_index_table) {
    int i,j, vlc_index;

    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize

    for (i=1 ; i < q->total_subbands ; i++){
        vlc_index=i;
        if (i >= q->js_subband_start * 2) {
            vlc_index-=q->js_subband_start;
        } else {
            vlc_index/=2;
            if(vlc_index < 1) vlc_index = 1;
        }
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13

        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
                     q->envelope_quant_index[vlc_index-1].bits,2);
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
    }
}

/**
 * Calculate the category and category_index vector.
 *
 * @param q                     pointer to the COOKContext
 * @param quant_index_table     pointer to the array
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static void categorize(COOKContext *q, int* quant_index_table,
                       int* category, int* category_index){
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
    int exp_index2[102];
    int exp_index1[102];

    int tmp_categorize_array[128*2];
    int tmp_categorize_array1_idx=q->numvector_size;
    int tmp_categorize_array2_idx=q->numvector_size;

    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);

    if(bits_left > q->samples_per_channel) {
        bits_left = q->samples_per_channel +
                    ((bits_left - q->samples_per_channel)*5)/8;
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
    }

    memset(&exp_index1,0,102*sizeof(int));
    memset(&exp_index2,0,102*sizeof(int));
    memset(&tmp_categorize_array,0,128*2*sizeof(int));

    bias=-32;

    /* Estimate bias. */
    for (i=32 ; i>0 ; i=i/2){
        num_bits = 0;
        index = 0;
        for (j=q->total_subbands ; j>0 ; j--){
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
            index++;
            num_bits+=expbits_tab[exp_idx];
        }
        if(num_bits >= bits_left - 32){
            bias+=i;
        }
    }

    /* Calculate total number of bits. */
    num_bits=0;
    for (i=0 ; i<q->total_subbands ; i++) {
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
        num_bits += expbits_tab[exp_idx];
        exp_index1[i] = exp_idx;
        exp_index2[i] = exp_idx;
    }
    tmpbias1 = tmpbias2 = num_bits;

    for (j = 1 ; j < q->numvector_size ; j++) {
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
            int max = -999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if (exp_index1[i] < 7) {
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
                    if ( v >= max) {
                        max = v;
                        index = i;
                    }
                }
            }
            if(index==-1)break;
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
            tmpbias1 -= expbits_tab[exp_index1[index]] -
                        expbits_tab[exp_index1[index]+1];
            ++exp_index1[index];
        } else {  /* <--- */
            int min = 999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if(exp_index2[i] > 0){
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
                    if ( v < min) {
                        min = v;
                        index = i;
                    }
                }
            }
            if(index == -1)break;
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
            tmpbias2 -= expbits_tab[exp_index2[index]] -
                        expbits_tab[exp_index2[index]-1];
            --exp_index2[index];
        }
    }
    memcpy(category, exp_index2, sizeof(int) * q->total_subbands );
    memcpy(category_index, tmp_categorize_array+tmp_categorize_array2_idx, sizeof(int) * (q->numvector_size-1) );
}


/**
 * Expand the category vector.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static inline void expand_category(COOKContext *q, int* category,
                                   int* category_index){
    int i;
    for(i=0 ; i<q->num_vectors ; i++){
        ++category[category_index[i]];
    }
}

/**
 * Unpack the subband_coef_index and subband_coef_sign vectors.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param subband_coef_index    array of indexes to quant_centroid_tab
 * @param subband_coef_sign     signs of coefficients
 */

static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
                       int* subband_coef_sign) {
    int i,j;
    int vlc, vd ,tmp, result;

    vd = vd_tab[category];
    result = 0;
    for(i=0 ; i<vpr_tab[category] ; i++)
    {
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
        if (q->bits_per_subpacket < get_bits_count(&q->gb))
        {
            vlc = 0;
            result = 1;
            memset(subband_coef_index, 0, sizeof(int)*vd);
            memset(subband_coef_sign, 0, sizeof(int)*vd);
            subband_coef_index+=vd;
            subband_coef_sign+=vd;
        }
        else
        {
            for(j=vd-1 ; j>=0 ; j--){
                tmp = (vlc * invradix_tab[category])/0x100000;
                subband_coef_index[j] = vlc - tmp * (kmax_tab[category]+1);
                vlc = tmp;
            }

            for(j=0 ; j<vd ; j++)
            {
                if (*subband_coef_index++) {
                    if(get_bits_count(&q->gb) < q->bits_per_subpacket) {
                        *subband_coef_sign++ = get_bits1(&q->gb);
                    } else {
                        result=1;
                        *subband_coef_sign++=0;
                    }
                } else {
                    *subband_coef_sign++=0;
                }
            }
        }
    }
    return result;
}


/**
 * Fill the mlt_buffer with mlt coefficients.
 *
 * @param q                 pointer to the COOKContext
 * @param category          pointer to the category array
 * @param quant_index_table pointer to the array
 * @param mlt_buffer        pointer to mlt coefficients
 */

static void decode_vectors(COOKContext* q, int* category,
                           int *quant_index_table, REAL_T* mlt_buffer)
                           ICODE_ATTR_COOK_DECODE;
static void decode_vectors(COOKContext* q, int* category,
                           int *quant_index_table, REAL_T* mlt_buffer){
    /* A zero in this table means that the subband coefficient is
       random noise coded. */
    int subband_coef_index[SUBBAND_SIZE];
    /* A zero in this table means that the subband coefficient is a
       positive multiplicator. */
    int subband_coef_sign[SUBBAND_SIZE];
    int band, j;
    int index=0;

    for(band=0 ; band<q->total_subbands ; band++){
        index = category[band];
        if(category[band] < 7){
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
                index=7;
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
            }
        }
        if(index>=7) {
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
        }
        scalar_dequant_math(q, index, quant_index_table[band],
                            subband_coef_index, subband_coef_sign,
                            &mlt_buffer[band * SUBBAND_SIZE]);
    }

    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
        return;
    } /* FIXME: should this be removed, or moved into loop above? */
}


/**
 * function for decoding mono data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer        pointer to mlt coefficients
 */

static void mono_decode(COOKContext *q, REAL_T* mlt_buffer) ICODE_ATTR_COOK_DECODE;
static void mono_decode(COOKContext *q, REAL_T* mlt_buffer) {

    int category_index[128];
    int quant_index_table[102];
    int category[128];

    memset(&category, 0, 128*sizeof(int));
    memset(&category_index, 0, 128*sizeof(int));

    decode_envelope(q, quant_index_table);
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
    categorize(q, quant_index_table, category, category_index);
    expand_category(q, category, category_index);
    decode_vectors(q, category, quant_index_table, mlt_buffer);
}

/**
 * function for getting the jointstereo coupling information
 *
 * @param q                 pointer to the COOKContext
 * @param decouple_tab      decoupling array
 *
 */

static void decouple_info(COOKContext *q, int* decouple_tab){
    int length, i;

    if(get_bits1(&q->gb)) {
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
        for (i=0 ; i<length ; i++) {
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
        }
        return;
    }

    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
    for (i=0 ; i<length ; i++) {
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
    }
    return;
}

/**
 * function for decoding joint stereo data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */

static void joint_decode(COOKContext *q, REAL_T* mlt_buffer1,
                         REAL_T* mlt_buffer2) {
    int i;
    int decouple_tab[SUBBAND_SIZE];
    REAL_T *decode_buffer = q->decode_buffer_0;
    int idx;

    memset(decouple_tab, 0, sizeof(decouple_tab));
    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));

    /* Make sure the buffers are zeroed out. */
    memset(mlt_buffer1,0, 1024*sizeof(REAL_T));
    memset(mlt_buffer2,0, 1024*sizeof(REAL_T));
    decouple_info(q, decouple_tab);
    mono_decode(q, decode_buffer);

    /* The two channels are stored interleaved in decode_buffer. */
    REAL_T * mlt_buffer1_end = mlt_buffer1 + (q->js_subband_start*SUBBAND_SIZE);
    while(mlt_buffer1 < mlt_buffer1_end)
    {
        memcpy(mlt_buffer1,decode_buffer,sizeof(REAL_T)*SUBBAND_SIZE);
        memcpy(mlt_buffer2,decode_buffer+20,sizeof(REAL_T)*SUBBAND_SIZE);
        mlt_buffer1 += 20;
        mlt_buffer2 += 20;
        decode_buffer += 40;
    }

    /* When we reach js_subband_start (the higher frequencies)
       the coefficients are stored in a coupling scheme. */
    idx = (1 << q->js_vlc_bits) - 1;
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
        int i1 = decouple_tab[cplband[i]];
        int i2 = idx - i1 - 1;
        mlt_buffer1_end = mlt_buffer1 + SUBBAND_SIZE;
        while(mlt_buffer1 < mlt_buffer1_end)
        {
            *mlt_buffer1++ = cplscale_math(*decode_buffer, q->js_vlc_bits, i1);
            *mlt_buffer2++ = cplscale_math(*decode_buffer++, q->js_vlc_bits, i2);
        }
        mlt_buffer1 += (20-SUBBAND_SIZE);
        mlt_buffer2 += (20-SUBBAND_SIZE);
        decode_buffer += (20-SUBBAND_SIZE);
    }
}

/**
 * First part of subpacket decoding:
 *  decode raw stream bytes and read gain info.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to raw stream data
 * @param gain_ptr          array of current/prev gain pointers
 */

#define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)

static inline void
decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
                      cook_gains *gains_ptr)
{
    int offset;

    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
                          q->bits_per_subpacket/8);
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
                  q->bits_per_subpacket);
    decode_gain_info(&q->gb, gains_ptr->now);

    /* Swap current and previous gains */
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
}

/**
 * Final part of subpacket decoding:
 *  Apply modulated lapped transform, gain compensation,
 *  clip and convert to integer.
 *
 * @param q                 pointer to the COOKContext
 * @param decode_buffer     pointer to the mlt coefficients
 * @param gain_ptr          array of current/prev gain pointers
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 * @param out               pointer to the output buffer
 * @param chan              0: left or single channel, 1: right channel
 */

static void
mlt_compensate_output(COOKContext *q, REAL_T *decode_buffer,
                      cook_gains *gains, REAL_T *previous_buffer,
                      int32_t *out, int chan)
{
    REAL_T *buffer = q->mono_mdct_output;
    int i;
    imlt_math(q, decode_buffer);

    /* Overlap with the previous block. */
    overlap_math(q, gains->previous[0], previous_buffer);

    /* Apply gain profile */
    for (i = 0; i < 8; i++) {
        if (gains->now[i] || gains->now[i + 1])
            interpolate_math(q, &buffer[q->samples_per_channel/8 * i],
                             gains->now[i], gains->now[i + 1]);
    }

    /* Save away the current to be previous block. */
    memcpy(previous_buffer, buffer+q->samples_per_channel,
           sizeof(REAL_T)*q->samples_per_channel);

    /* Copy output to non-interleaved sample buffer */
    memcpy(out + (chan * q->samples_per_channel), buffer,
           sizeof(REAL_T)*q->samples_per_channel);
}


/**
 * Cook subpacket decoding. This function returns one decoded subpacket,
 * usually 1024 samples per channel.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to the inbuffer
 * @param sub_packet_size   subpacket size
 * @param outbuffer         pointer to the outbuffer
 */


static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
                            int sub_packet_size, int32_t *outbuffer) {
    /* packet dump */
//    for (i=0 ; i<sub_packet_size ; i++) {
//        DEBUGF("%02x", inbuffer[i]);
//    }
//    DEBUGF("\n");

    decode_bytes_and_gain(q, inbuffer, &q->gains1);

    if (q->joint_stereo) {
        joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
    } else {
        mono_decode(q, q->decode_buffer_1);

        if (q->nb_channels == 2) {
            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
            mono_decode(q, q->decode_buffer_2);
        }
    }

    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
                          q->mono_previous_buffer1, outbuffer, 0);

    if (q->nb_channels == 2) {
        if (q->joint_stereo) {
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
                                  q->mono_previous_buffer2, outbuffer, 1);
        } else {
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
                                  q->mono_previous_buffer2, outbuffer, 1);
        }
    }
    return q->samples_per_frame * sizeof(int32_t);
}


/**
 * Cook frame decoding
 *
 * @param rmctx     pointer to the RMContext
 */

int cook_decode_frame(RMContext *rmctx,COOKContext *q,
            int32_t *outbuffer, int *data_size,
            const uint8_t *inbuffer, int buf_size) {
    //COOKContext *q = avctx->priv_data;
    //COOKContext *q;

    if (buf_size < rmctx->block_align)
        return buf_size;

    *data_size = decode_subpacket(q, inbuffer, rmctx->block_align, outbuffer);

    /* Discard the first two frames: no valid audio. */
    if (rmctx->frame_number < 2) *data_size = 0;

    return rmctx->block_align;
}

#ifdef COOKDEBUG
static void dump_cook_context(COOKContext *q)
{
    //int i=0;
#define PRINT(a,b) DEBUGF(" %s = %d\n", a, b);
    DEBUGF("COOKextradata\n");
    DEBUGF("cookversion=%x\n",q->cookversion);
    if (q->cookversion > STEREO) {
        PRINT("js_subband_start",q->js_subband_start);
        PRINT("js_vlc_bits",q->js_vlc_bits);
    }
    PRINT("nb_channels",q->nb_channels);
    PRINT("bit_rate",q->bit_rate);
    PRINT("sample_rate",q->sample_rate);
    PRINT("samples_per_channel",q->samples_per_channel);
    PRINT("samples_per_frame",q->samples_per_frame);
    PRINT("subbands",q->subbands);
    PRINT("random_state",q->random_state);
    PRINT("js_subband_start",q->js_subband_start);
    PRINT("log2_numvector_size",q->log2_numvector_size);
    PRINT("numvector_size",q->numvector_size);
    PRINT("total_subbands",q->total_subbands);
}
#endif

/**
 * Cook initialization
 */

int cook_decode_init(RMContext *rmctx, COOKContext *q)
{
#if defined(CPU_COLDFIRE)
    coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
#endif
    /* cook extradata */
    q->cookversion = rm_get_uint32be(rmctx->codec_extradata);
    q->samples_per_frame =  rm_get_uint16be(&rmctx->codec_extradata[4]);
    q->subbands = rm_get_uint16be(&rmctx->codec_extradata[6]);
    q->extradata_size = rmctx->extradata_size;
    if (q->extradata_size >= 16){
        q->js_subband_start = rm_get_uint16be(&rmctx->codec_extradata[12]);
        q->js_vlc_bits = rm_get_uint16be(&rmctx->codec_extradata[14]);
    }

    /* Take data from the RMContext (RM container). */
    q->sample_rate = rmctx->sample_rate;
    q->nb_channels = rmctx->nb_channels;
    q->bit_rate = rmctx->bit_rate;  

    /* Initialize RNG. */
    q->random_state = 0;

    /* Initialize extradata related variables. */
    q->samples_per_channel = q->samples_per_frame >> (q->nb_channels-1);
    q->bits_per_subpacket = rmctx->block_align * 8;

    /* Initialize default data states. */
    q->log2_numvector_size = 5;
    q->total_subbands = q->subbands;

    /* Initialize version-dependent variables */
    DEBUGF("q->cookversion=%x\n",q->cookversion);
    q->joint_stereo = 0;
    switch (q->cookversion) {
        case MONO:
            if (q->nb_channels != 1) {
                DEBUGF("Container channels != 1, report sample!\n");
                return -1;
            }
            DEBUGF("MONO\n");
            break;
        case STEREO:
            if (q->nb_channels != 1) {
                q->bits_per_subpacket = q->bits_per_subpacket/2;
            }
            DEBUGF("STEREO\n");
            break;
        case JOINT_STEREO:
            if (q->nb_channels != 2) {
                DEBUGF("Container channels != 2, report sample!\n");
                return -1;
            }
            DEBUGF("JOINT_STEREO\n");
            if (q->extradata_size >= 16){
                q->total_subbands = q->subbands + q->js_subband_start;
                q->joint_stereo = 1;
            }
            if (q->samples_per_channel > 256) {
                q->log2_numvector_size  = 6;
            }
            if (q->samples_per_channel > 512) {
                q->log2_numvector_size  = 7;
            }
            break;
        case MC_COOK:
            DEBUGF("MC_COOK not supported!\n");
            return -1;
            break;
        default:
            DEBUGF("Unknown Cook version, report sample!\n");
            return -1;
            break;
    }

    /* Initialize variable relations */
    q->numvector_size = (1 << q->log2_numvector_size);
    q->mdct_nbits = av_log2(q->samples_per_channel)+1;

    /* Generate tables */
    if (init_cook_vlc_tables(q) != 0)
        return -1;


    if(rmctx->block_align >= UINT16_MAX/2)
        return -1;

    q->gains1.now      = q->gain_1;
    q->gains1.previous = q->gain_2;
    q->gains2.now      = q->gain_3;
    q->gains2.previous = q->gain_4;


    /* Initialize COOK signal arithmetic handling */
    /*
    if (1) {
        q->scalar_dequant  = scalar_dequant_math;
        q->interpolate     = interpolate_math;
    }
    */

    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
    if (q->total_subbands > 53) {
        DEBUGF("total_subbands > 53, report sample!\n");
        return -1;
    }
    if (q->subbands > 50) {
        DEBUGF("subbands > 50, report sample!\n");
        return -1;
    }
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
    } else {
        DEBUGF("unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
        return -1;
    }
    if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
        DEBUGF("q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
        return -1;
    }


#ifdef COOKDEBUG
    dump_cook_context(q);
#endif
    return 0;
}