1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2016 Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "crypto.h"
#include "misc.h"
#include "tomcrypt.h"
enum crypto_method_t g_cur_method = CRYPTO_NONE;
uint8_t g_key[16];
int cbc_mac2(
const uint8_t *in_data, /* Input data */
uint8_t *out_data, /* Output data (or NULL) */
int nr_blocks, /* Number of blocks to encrypt/decrypt (one block=16 bytes) */
uint8_t key[16], /* Key */
uint8_t iv[16], /* Initialisation Vector */
uint8_t (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */
bool encrypt /* 1 to encrypt, 0 to decrypt */
)
{
int cipher = register_cipher(&aes_desc);
symmetric_CBC cbc;
cbc_start(cipher, iv, key, 16, 0, &cbc);
/* encrypt */
if(encrypt)
{
uint8_t tmp[16];
/* we need some output buffer, either a temporary one if we are CBC-MACing
* only, or use output buffer if available */
uint8_t *out_ptr = (out_data == NULL) ? tmp : out_data;
while(nr_blocks-- > 0)
{
cbc_encrypt(in_data, out_ptr, 16, &cbc);
/* if this is the last block, copy CBC-MAC */
if(nr_blocks == 0 && out_cbc_mac)
memcpy(out_cbc_mac, out_ptr, 16);
/* if we are writing data to the output buffer, advance output pointer */
if(out_data != NULL)
out_ptr += 16;
in_data += 16;
}
return CRYPTO_ERROR_SUCCESS;
}
/* decrypt */
else
{
cbc_decrypt(in_data, out_data, nr_blocks * 16, &cbc);
/* update keys if neeeded */
/* we cannot produce a CBC-MAC in decrypt mode, output buffer exists */
if(out_cbc_mac || out_data == NULL)
return CRYPTO_ERROR_INVALID_OP;
return CRYPTO_ERROR_SUCCESS;
}
}
int crypto_setup(struct crypto_key_t *key)
{
g_cur_method = key->method;
switch(g_cur_method)
{
case CRYPTO_KEY:
memcpy(g_key, key->u.key, 16);
return CRYPTO_ERROR_SUCCESS;
default:
return CRYPTO_ERROR_BADSETUP;
}
}
int crypto_apply(
uint8_t *in_data, /* Input data */
uint8_t *out_data, /* Output data (or NULL) */
int nr_blocks, /* Number of blocks (one block=16 bytes) */
uint8_t iv[16], /* Key */
uint8_t (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */
bool encrypt)
{
if(g_cur_method == CRYPTO_KEY)
return cbc_mac2(in_data, out_data, nr_blocks, g_key, iv, out_cbc_mac, encrypt);
else
return CRYPTO_ERROR_BADSETUP;
}
void sha_1_init(struct sha_1_params_t *params)
{
sha1_init(¶ms->state);
}
void sha_1_update(struct sha_1_params_t *params, uint8_t *buffer, int size)
{
sha1_process(¶ms->state, buffer, size);
}
void sha_1_finish(struct sha_1_params_t *params)
{
sha1_done(¶ms->state, params->hash);
}
void sha_1_output(struct sha_1_params_t *params, uint8_t *out)
{
memcpy(out, params->hash, 20);
}
|