summaryrefslogtreecommitdiffstats
path: root/utils/imxtools/sbtools/sb.c
blob: d7d3734a91f74ce3a4edaf609586cb9002be4869 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2011 Amaury Pouly
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdarg.h>
#include "misc.h"
#include "crypto.h"
#include "sb.h"

static void fill_gaps(struct sb_file_t *sb)
{
    for(int i = 0; i < sb->nr_sections; i++)
    {
        struct sb_section_t *sec = &sb->sections[i];
        for(int j = 0; j < sec->nr_insts; j++)
        {
            struct sb_inst_t *inst = &sec->insts[j];
            if(inst->inst != SB_INST_LOAD)
                continue;
            inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size;
            /* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */
            inst->padding = xmalloc(15);
            generate_random_data(inst->padding, 15);
        }
    }
}

static void compute_sb_offsets(struct sb_file_t *sb, void *u, generic_printf_t cprintf)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    sb->image_size = 0;
    /* sb header */
    sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE;
    /* sections headers */
    sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE;
    /* key dictionary */
    sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE;
    /* sections */
    for(int i = 0; i < sb->nr_sections; i++)
    {
        /* each section has a preliminary TAG command */
        sb->image_size += sizeof(struct sb_instruction_tag_t) / BLOCK_SIZE;
        /* we might need to pad the section so compute next alignment */
        uint32_t alignment = BLOCK_SIZE;
        if((i + 1) < sb->nr_sections)
            alignment = sb->sections[i + 1].alignment;
        alignment /= BLOCK_SIZE; /* alignment in block sizes */

        struct sb_section_t *sec = &sb->sections[i];
        sec->sec_size = 0;

        char name[5];
        sb_fill_section_name(name, sec->identifier);
        printf(BLUE, "%s", sec->is_data ? "Data" : "Boot");
        printf(GREEN, " Section");
        printf(YELLOW, "'%s'", name);
        if(sec->is_cleartext)
            printf(RED, " (cleartext)");
        printf(OFF, "\n");

        sec->file_offset = sb->image_size;
        for(int j = 0; j < sec->nr_insts; j++)
        {
            struct sb_inst_t *inst = &sec->insts[j];
            if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP)
            {
                printf(RED, "  %s", inst->inst == SB_INST_CALL ? "CALL" : "JUMP");
                printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
                printf(OFF, " | "); printf(GREEN, "arg=0x%08x\n", inst->argument);
                sb->image_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE;
                sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE;
            }
            else if(inst->inst == SB_INST_FILL)
            {
                printf(RED, "  FILL");
                printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
                printf(OFF, " | "); printf(GREEN, "len=0x%08x", inst->size);
                printf(OFF, " | "); printf(YELLOW, "pattern=0x%08x\n", inst->pattern);
                sb->image_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE;
                sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE;
            }
            else if(inst->inst == SB_INST_LOAD)
            {
                printf(RED, "  LOAD");
                printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
                printf(OFF, " | "); printf(GREEN, "len=0x%08x\n", inst->size);
                /* load header */
                sb->image_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE;
                sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE;
                /* data + alignment */
                sb->image_size += (inst->size + inst->padding_size) / BLOCK_SIZE;
                sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE;
            }
            else if(inst->inst == SB_INST_MODE)
            {
                printf(RED, "  MODE");
                printf(OFF, " | "); printf(BLUE, "mod=0x%08x\n", inst->addr);
                sb->image_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE;
                sec->sec_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE;
            }
            else if(inst->inst == SB_INST_DATA)
            {
                printf(RED, "  DATA");
                printf(OFF, " | "); printf(BLUE, "size=0x%08x\n", inst->size);
                sb->image_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE;
                sec->sec_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE;
            }
            else if(inst->inst == SB_INST_NOP)
            {
                printf(RED, "  NOOP\n");
                sb->image_size += sizeof(struct sb_instruction_nop_t) / BLOCK_SIZE;
                sec->sec_size += sizeof(struct sb_instruction_nop_t) / BLOCK_SIZE;
            }
            else
            {
                cprintf(u, true, GREY, "die on inst %d\n", inst->inst);
            }
        }
        /* we need to make sure next section starts on the right alignment.
         * Since each section starts with a boot tag, we thus need to ensure
         * that this sections ends at adress X such that X+BLOCK_SIZE is
         * a multiple of the alignment.
         * For data sections, we just add random data, otherwise we add nops */
        uint32_t missing_sz = alignment - ((sb->image_size + 1) % alignment);
        if(missing_sz != alignment)
        {
            struct sb_inst_t *aug_insts;
            int nr_aug_insts = 0;

            if(sb->sections[i].is_data)
            {
                nr_aug_insts = 1;
                aug_insts = xmalloc(sizeof(struct sb_inst_t));
                memset(aug_insts, 0, sizeof(struct sb_inst_t));
                aug_insts[0].inst = SB_INST_DATA;
                aug_insts[0].size = missing_sz * BLOCK_SIZE;
                aug_insts[0].data = xmalloc(missing_sz * BLOCK_SIZE);
                generate_random_data(aug_insts[0].data, missing_sz * BLOCK_SIZE);
                printf(RED, "  DATA");
                printf(OFF, " | "); printf(BLUE, "size=0x%08x\n", aug_insts[0].size);
            }
            else
            {
                nr_aug_insts = missing_sz;
                aug_insts = xmalloc(sizeof(struct sb_inst_t) * nr_aug_insts);
                memset(aug_insts, 0, sizeof(struct sb_inst_t) * nr_aug_insts);
                for(int j = 0; j < nr_aug_insts; j++)
                {
                    aug_insts[j].inst = SB_INST_NOP;
                    printf(RED, "  NOOP\n");
                }
            }

            sb->sections[i].insts = augment_array(sb->sections[i].insts, sizeof(struct sb_inst_t),
                sb->sections[i].nr_insts, aug_insts, nr_aug_insts);
            sb->sections[i].nr_insts += nr_aug_insts;
            free(aug_insts);

            /* augment image and section size */
            sb->image_size += missing_sz;
            sec->sec_size += missing_sz;
        }
    }
    /* final signature */
    sb->image_size += 2;
    #undef printf
}

static uint64_t generate_timestamp()
{
    struct tm tm_base;
    memset(&tm_base, 0, sizeof(tm_base));
    /* 2000/1/1 0:00:00 */
    tm_base.tm_mday = 1;
    tm_base.tm_year = 100;
    time_t t = time(NULL) - mktime(&tm_base);
    return (uint64_t)t * 1000000L;
}

static uint16_t swap16(uint16_t t)
{
    return (t << 8) | (t >> 8);
}

static void fix_version(struct sb_version_t *ver)
{
    ver->major = swap16(ver->major);
    ver->minor = swap16(ver->minor);
    ver->revision = swap16(ver->revision);
}

static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr)
{
    struct sha_1_params_t sha_1_params;

    sb_hdr->signature[0] = 'S';
    sb_hdr->signature[1] = 'T';
    sb_hdr->signature[2] = 'M';
    sb_hdr->signature[3] = 'P';
    sb_hdr->major_ver = IMAGE_MAJOR_VERSION;
    sb_hdr->minor_ver = IMAGE_MINOR_VERSION;
    sb_hdr->flags = 0;
    sb_hdr->image_size = sb->image_size;
    sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE;
    sb_hdr->first_boot_sec_id = sb->first_boot_sec_id;
    sb_hdr->nr_keys = g_nr_keys;
    sb_hdr->nr_sections = sb->nr_sections;
    sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE;
    sb_hdr->key_dict_off = sb_hdr->header_size +
        sb_hdr->sec_hdr_size * sb_hdr->nr_sections;
    sb_hdr->first_boot_tag_off = sb_hdr->key_dict_off +
        sizeof(struct sb_key_dictionary_entry_t) * sb_hdr->nr_keys / BLOCK_SIZE;
    generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0));
    generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1));
    /* Version 1.0 has 6 bytes of random padding,
     * Version 1.1 requires the last 4 bytes to be 'sgtl' */
    if(sb->minor_version >= 1)
        memcpy(&sb_hdr->rand_pad0[2], "sgtl", 4);

    if(sb->override_timestamp)
        sb_hdr->timestamp = sb->timestamp;
    else
        sb_hdr->timestamp = generate_timestamp();
    sb_hdr->product_ver = sb->product_ver;
    fix_version(&sb_hdr->product_ver);
    sb_hdr->component_ver = sb->component_ver;
    fix_version(&sb_hdr->component_ver);
    sb_hdr->drive_tag = sb->drive_tag;

    sha_1_init(&sha_1_params);
    sha_1_update(&sha_1_params, &sb_hdr->signature[0],
        sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header));
    sha_1_finish(&sha_1_params);
    sha_1_output(&sha_1_params, sb_hdr->sha1_header);
}

static void produce_sb_section_header(struct sb_section_t *sec,
    struct sb_section_header_t *sec_hdr)
{
    sec_hdr->identifier = sec->identifier;
    sec_hdr->offset = sec->file_offset;
    sec_hdr->size = sec->sec_size;
    sec_hdr->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
        | (sec->is_cleartext ? SECTION_CLEARTEXT : 0);
}

static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr)
{
    uint8_t sum = 90;
    byte *ptr = (byte *)hdr;
    for(int i = 1; i < 16; i++)
        sum += ptr[i];
    return sum;
}

static void produce_section_tag_cmd(struct sb_section_t *sec,
    struct sb_instruction_tag_t *tag, bool is_last)
{
    tag->hdr.opcode = SB_INST_TAG;
    tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0;
    tag->identifier = sec->identifier;
    tag->len = sec->sec_size;
    tag->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
        | (sec->is_cleartext ? SECTION_CLEARTEXT : 0);
    tag->hdr.checksum = instruction_checksum(&tag->hdr);
}

void produce_sb_instruction(struct sb_inst_t *inst,
    struct sb_instruction_common_t *cmd, void *u, generic_printf_t cprintf)
{
    memset(cmd, 0, sizeof(struct sb_instruction_common_t));
    cmd->hdr.opcode = inst->inst;
    switch(inst->inst)
    {
        case SB_INST_CALL:
        case SB_INST_JUMP:
            cmd->addr = inst->addr;
            cmd->data = inst->argument;
            break;
        case SB_INST_FILL:
            cmd->addr = inst->addr;
            cmd->len = inst->size;
            cmd->data = inst->pattern;
            break;
        case SB_INST_LOAD:
            cmd->addr = inst->addr;
            cmd->len = inst->size;
            cmd->data = crc_continue(crc(inst->data, inst->size),
                inst->padding, inst->padding_size);
            break;
        case SB_INST_MODE:
            cmd->data = inst->addr;
            break;
        case SB_INST_NOP:
            break;
        default:
            if(g_debug)
                cprintf(u, true, GREY, "die on invalid inst %d\n", inst->inst);
    }
    cmd->hdr.checksum = instruction_checksum(&cmd->hdr);
}

enum sb_error_t sb_write_file(struct sb_file_t *sb, const char *filename, void *u,
    generic_printf_t cprintf)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    struct crypto_key_t real_key;
    real_key.method = CRYPTO_KEY;
    byte crypto_iv[16];
    byte (*cbc_macs)[16] = xmalloc(16 * g_nr_keys);
    /* init CBC-MACs */
    for(int i = 0; i < g_nr_keys; i++)
        memset(cbc_macs[i], 0, 16);

    fill_gaps(sb);
    compute_sb_offsets(sb, u, cprintf);

    generate_random_data(real_key.u.key, 16);

    /* global SHA-1 */
    struct sha_1_params_t file_sha1;
    sha_1_init(&file_sha1);
    /* produce and write header */
    struct sb_header_t sb_hdr;
    produce_sb_header(sb, &sb_hdr);
    /* allocate image */
    byte *buf = xmalloc(sb_hdr.image_size * BLOCK_SIZE);
    byte *buf_p = buf;
    #define write(p, sz) do { memcpy(buf_p, p, sz); buf_p += sz; } while(0)

    sha_1_update(&file_sha1, (byte *)&sb_hdr, sizeof(sb_hdr));
    write(&sb_hdr, sizeof(sb_hdr));

    memcpy(crypto_iv, &sb_hdr, 16);

    /* update CBC-MACs */
    for(int i = 0; i < g_nr_keys; i++)
        crypto_cbc((byte *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE, &g_key_array[i],
            cbc_macs[i], &cbc_macs[i], 1);

    /* produce and write section headers */
    for(int i = 0; i < sb_hdr.nr_sections; i++)
    {
        struct sb_section_header_t sb_sec_hdr;
        produce_sb_section_header(&sb->sections[i], &sb_sec_hdr);
        sha_1_update(&file_sha1, (byte *)&sb_sec_hdr, sizeof(sb_sec_hdr));
        write(&sb_sec_hdr, sizeof(sb_sec_hdr));
        /* update CBC-MACs */
        for(int j = 0; j < g_nr_keys; j++)
            crypto_cbc((byte *)&sb_sec_hdr, NULL, sizeof(sb_sec_hdr) / BLOCK_SIZE,
                &g_key_array[j], cbc_macs[j], &cbc_macs[j], 1);
    }
    /* produce key dictionary */
    for(int i = 0; i < g_nr_keys; i++)
    {
        struct sb_key_dictionary_entry_t entry;
        memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16);
        crypto_cbc(real_key.u.key, entry.key, 1, &g_key_array[i],
            crypto_iv, NULL, 1);

        write(&entry, sizeof(entry));
        sha_1_update(&file_sha1, (byte *)&entry, sizeof(entry));
    }

    free(cbc_macs);

    /* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK */
    /* Image crafting, don't use it unless you understand what you do */
    if(sb->override_real_key)
        memcpy(real_key.u.key, sb->real_key, 16);
    if(sb->override_crypto_iv)
        memcpy(crypto_iv, sb->crypto_iv, 16);
    /* KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH */
    if(g_debug)
    {
        printf(GREEN, "Real key: ");
        for(int j = 0; j < 16; j++)
            printf(YELLOW, "%02x", real_key.u.key[j]);
        printf(OFF, "\n");
        printf(GREEN, "IV      : ");
        for(int j = 0; j < 16; j++)
            printf(YELLOW, "%02x", crypto_iv[j]);
        printf(OFF, "\n");
    }
    /* produce sections data */
    for(int i = 0; i< sb_hdr.nr_sections; i++)
    {
        /* produce tag command */
        struct sb_instruction_tag_t tag_cmd;
        produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections);
        if(g_nr_keys > 0)
            crypto_cbc((byte *)&tag_cmd, (byte *)&tag_cmd, sizeof(tag_cmd) / BLOCK_SIZE,
                &real_key, crypto_iv, NULL, 1);
        sha_1_update(&file_sha1, (byte *)&tag_cmd, sizeof(tag_cmd));
        write(&tag_cmd, sizeof(tag_cmd));
        /* produce other commands */
        byte cur_cbc_mac[16];
        memcpy(cur_cbc_mac, crypto_iv, 16);
        for(int j = 0; j < sb->sections[i].nr_insts; j++)
        {
            struct sb_inst_t *inst = &sb->sections[i].insts[j];
            /* command */
            if(inst->inst != SB_INST_DATA)
            {
                struct sb_instruction_common_t cmd;
                produce_sb_instruction(inst, &cmd, u, cprintf);
                if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
                    crypto_cbc((byte *)&cmd, (byte *)&cmd, sizeof(cmd) / BLOCK_SIZE,
                        &real_key, cur_cbc_mac, &cur_cbc_mac, 1);
                sha_1_update(&file_sha1, (byte *)&cmd, sizeof(cmd));
                write(&cmd, sizeof(cmd));
            }
            /* data */
            if(inst->inst == SB_INST_LOAD || inst->inst == SB_INST_DATA)
            {
                uint32_t sz = inst->size + inst->padding_size;
                byte *data = xmalloc(sz);
                memcpy(data, inst->data, inst->size);
                memcpy(data + inst->size, inst->padding, inst->padding_size);
                if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
                    crypto_cbc(data, data, sz / BLOCK_SIZE,
                        &real_key, cur_cbc_mac, &cur_cbc_mac, 1);
                sha_1_update(&file_sha1, data, sz);
                write(data, sz);
                free(data);
            }
        }
    }
    /* write file SHA-1 */
    byte final_sig[32];
    sha_1_finish(&file_sha1);
    sha_1_output(&file_sha1, final_sig);
    generate_random_data(final_sig + 20, 12);
    if(g_nr_keys > 0)
        crypto_cbc(final_sig, final_sig, 2, &real_key, crypto_iv, NULL, 1);
    write(final_sig, 32);

    if(buf_p - buf != sb_hdr.image_size * BLOCK_SIZE)
    {
        if(g_debug)
            printf(GREY, u, true, "SB image buffer was not entirely filled !\n");
        return SB_ERROR;
    }

    FILE *fd = fopen(filename, "wb");
    if(fd == NULL)
        return SB_OPEN_ERROR;
    if(fwrite(buf, sb_hdr.image_size * BLOCK_SIZE, 1, fd) != 1)
    {
        free(buf);
        return SB_WRITE_ERROR;
    }
    fclose(fd);
    free(buf);

    return SB_SUCCESS;
    #undef printf
}

static struct sb_section_t *read_section(bool data_sec, uint32_t id, byte *buf,
    int size, const char *indent, void *u, generic_printf_t cprintf, enum sb_error_t *err)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    #define fatal(e, ...) \
        do { if(err) *err = e; \
            cprintf(u, true, GREY, __VA_ARGS__); \
            sb_free_section(*sec); \
            free(sec); \
            return NULL; } while(0)

    struct sb_section_t *sec = xmalloc(sizeof(struct sb_section_t));
    memset(sec, 0, sizeof(struct sb_section_t));
    sec->identifier = id;
    sec->is_data = data_sec;
    sec->sec_size = ROUND_UP(size, BLOCK_SIZE) / BLOCK_SIZE;

    if(data_sec)
    {
        sec->nr_insts = 1;
        sec->insts = xmalloc(sizeof(struct sb_inst_t));
        memset(sec->insts, 0, sizeof(struct sb_inst_t));
        sec->insts->inst = SB_INST_DATA;
        sec->insts->size = size;
        sec->insts->data = memdup(buf, size);
        return sec;
    }

    /* Pretty print the content */
    int pos = 0;
    while(pos < size)
    {
        struct sb_inst_t inst;
        memset(&inst, 0, sizeof(inst));

        struct sb_instruction_header_t *hdr = (struct sb_instruction_header_t *)&buf[pos];
        inst.inst = hdr->opcode;

        printf(OFF, "%s", indent);
        uint8_t checksum = instruction_checksum(hdr);
        if(checksum != hdr->checksum)
            fatal(SB_CHECKSUM_ERROR, "Bad instruction checksum\n");
        if(hdr->flags != 0)
        {
            printf(GREY, "[");
            printf(BLUE, "f=%x", hdr->flags);
            printf(GREY, "] ");
        }
        if(hdr->opcode == SB_INST_LOAD)
        {
            struct sb_instruction_load_t *load = (struct sb_instruction_load_t *)&buf[pos];
            inst.size = load->len;
            inst.addr = load->addr;
            inst.data = memdup(load + 1, load->len);

            printf(RED, "LOAD");
            printf(OFF, " | ");
            printf(BLUE, "addr=0x%08x", load->addr);
            printf(OFF, " | ");
            printf(GREEN, "len=0x%08x", load->len);
            printf(OFF, " | ");
            printf(YELLOW, "crc=0x%08x", load->crc);
            /* data is padded to 16-byte boundary with random data and crc'ed with it */
            uint32_t computed_crc = crc(&buf[pos + sizeof(struct sb_instruction_load_t)],
                ROUND_UP(load->len, 16));
            if(load->crc == computed_crc)
                printf(RED, "  Ok\n");
            else
            {
                printf(RED, "  Failed (crc=0x%08x)\n", computed_crc);
                fatal(SB_CHECKSUM_ERROR, "Instruction data crc error\n");
            }

            pos += load->len + sizeof(struct sb_instruction_load_t);
        }
        else if(hdr->opcode == SB_INST_FILL)
        {
            struct sb_instruction_fill_t *fill = (struct sb_instruction_fill_t *)&buf[pos];
            inst.pattern = fill->pattern;
            inst.size = fill->len;
            inst.addr = fill->addr;

            printf(RED, "FILL");
            printf(OFF, " | ");
            printf(BLUE, "addr=0x%08x", fill->addr);
            printf(OFF, " | ");
            printf(GREEN, "len=0x%08x", fill->len);
            printf(OFF, " | ");
            printf(YELLOW, "pattern=0x%08x\n", fill->pattern);

            pos += sizeof(struct sb_instruction_fill_t);
        }
        else if(hdr->opcode == SB_INST_CALL ||
                hdr->opcode == SB_INST_JUMP)
        {
            int is_call = (hdr->opcode == SB_INST_CALL);
            struct sb_instruction_call_t *call = (struct sb_instruction_call_t *)&buf[pos];
            inst.addr = call->addr;
            inst.argument = call->arg;

            if(is_call)
                printf(RED, "CALL");
            else
                printf(RED, "JUMP");
            printf(OFF, " | ");
            printf(BLUE, "addr=0x%08x", call->addr);
            printf(OFF, " | ");
            printf(GREEN, "arg=0x%08x\n", call->arg);

            pos += sizeof(struct sb_instruction_call_t);
        }
        else if(hdr->opcode == SB_INST_MODE)
        {
            struct sb_instruction_mode_t *mode = (struct sb_instruction_mode_t *)hdr;
            inst.argument = mode->mode;

            printf(RED, "MODE");
            printf(OFF, " | ");
            printf(BLUE, "mod=0x%08x\n", mode->mode);

            pos += sizeof(struct sb_instruction_mode_t);
        }
        else if(hdr->opcode == SB_INST_NOP)
        {
            printf(RED, "NOOP\n");
            pos += sizeof(struct sb_instruction_mode_t);
        }
        else
        {
            fatal(SB_FORMAT_ERROR, "Unknown instruction %d at address 0x%08lx\n", hdr->opcode, (unsigned long)pos);
            break;
        }

        sec->insts = augment_array(sec->insts, sizeof(struct sb_inst_t), sec->nr_insts++, &inst, 1);
        pos = ROUND_UP(pos, BLOCK_SIZE);
    }

    return sec;
    #undef printf
    #undef fatal
}

void sb_fill_section_name(char name[5], uint32_t identifier)
{
    name[0] = (identifier >> 24) & 0xff;
    name[1] = (identifier >> 16) & 0xff;
    name[2] = (identifier >> 8) & 0xff;
    name[3] = identifier & 0xff;
    for(int i = 0; i < 4; i++)
        if(!isprint(name[i]))
            name[i] = '_';
    name[4] = 0;
}

static uint32_t guess_alignment(uint32_t off)
{
    /* find greatest power of two which divides the offset */
    if(off == 0)
        return 1;
    uint32_t a = 1;
    while(off % (2 * a) == 0)
        a *= 2;
    return a;
}

struct sb_file_t *sb_read_file(const char *filename, bool raw_mode, void *u,
    generic_printf_t cprintf, enum sb_error_t *err)
{
    return sb_read_file_ex(filename, 0, -1, raw_mode, u, cprintf, err);
}

struct sb_file_t *sb_read_file_ex(const char *filename, size_t offset, size_t size, bool raw_mode, void *u,
    generic_printf_t cprintf, enum sb_error_t *err)
{
    #define fatal(e, ...) \
        do { if(err) *err = e; \
            cprintf(u, true, GREY, __VA_ARGS__); \
            free(buf); \
            return NULL; } while(0)

    FILE *f = fopen(filename, "rb");
    void *buf = NULL;
    if(f == NULL)
        fatal(SB_OPEN_ERROR, "Cannot open file for reading\n");
    fseek(f, 0, SEEK_END);
    size_t read_size = ftell(f);
    fseek(f, offset, SEEK_SET);
    if(size != (size_t)-1)
        read_size = size;
    buf = xmalloc(read_size);
    if(fread(buf, read_size, 1, f) != 1)
    {
        fclose(f);
        fatal(SB_READ_ERROR, "Cannot read file\n");
    }
    fclose(f);

    struct sb_file_t *ret = sb_read_memory(buf, read_size, raw_mode, u, cprintf, err);
    free(buf);
    return ret;

    #undef fatal
}

struct printer_t
{
    void *user;
    generic_printf_t cprintf;
    const char *color;
    bool error;
};

static void sb_printer(void *user, const char *fmt, ...)
{
    struct printer_t *p = user;
    va_list args;
    va_start(args, fmt);
    char buffer[1024];
    vsnprintf(buffer, sizeof(buffer), fmt, args);
    p->cprintf(p->user, p->error, p->color, "%s", buffer);
    va_end(args);
}

struct sb_file_t *sb_read_memory(void *_buf, size_t filesize, bool raw_mode, void *u,
    generic_printf_t cprintf, enum sb_error_t *err)
{
    struct sb_file_t *sb_file = NULL;
    uint8_t *buf = _buf;

    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    #define fatal(e, ...) \
        do { if(err) *err = e; \
            cprintf(u, true, GREY, __VA_ARGS__); \
            sb_free(sb_file); \
            return NULL; } while(0)
    struct printer_t printer = {.user = u, .cprintf = cprintf, .color = OFF, .error = false };
    #define print_hex(c, p, len, nl) \
        do { printer.color = c; print_hex(&printer, sb_printer, p, len, nl); } while(0)

    struct sha_1_params_t sha_1_params;
    sb_file = xmalloc(sizeof(struct sb_file_t));
    memset(sb_file, 0, sizeof(struct sb_file_t));
    struct sb_header_t *sb_header = (struct sb_header_t *)buf;

    sb_file->image_size = sb_header->image_size;
    sb_file->minor_version = sb_header->minor_ver;
    sb_file->flags = sb_header->flags;
    sb_file->drive_tag = sb_header->drive_tag;
    sb_file->first_boot_sec_id = sb_header->first_boot_sec_id;

    if(memcmp(sb_header->signature, "STMP", 4) != 0)
        fatal(SB_FORMAT_ERROR, "Bad signature\n");
    if(sb_header->image_size * BLOCK_SIZE > filesize)
        fatal(SB_FORMAT_ERROR, "File too small (should be at least %d bytes)\n",
            sb_header->image_size * BLOCK_SIZE);
    if(sb_header->header_size * BLOCK_SIZE != sizeof(struct sb_header_t))
        fatal(SB_FORMAT_ERROR, "Bad header size\n");
    if(sb_header->sec_hdr_size * BLOCK_SIZE != sizeof(struct sb_section_header_t))
        fatal(SB_FORMAT_ERROR, "Bad section header size\n");

    if(filesize > sb_header->image_size * BLOCK_SIZE)
    {
        printf(GREY, "[Restrict file size from %lu to %d bytes]\n", filesize,
            sb_header->image_size * BLOCK_SIZE);
        filesize = sb_header->image_size * BLOCK_SIZE;
    }

    printf(BLUE, "Basic info:\n");
    printf(GREEN, "  SB version: ");
    printf(YELLOW, "%d.%d\n", sb_header->major_ver, sb_header->minor_ver);
    printf(GREEN, "  Header SHA-1: ");
    byte *hdr_sha1 = sb_header->sha1_header;
    print_hex(YELLOW, hdr_sha1, 20, false);
    /* Check SHA1 sum */
    byte computed_sha1[20];
    sha_1_init(&sha_1_params);
    sha_1_update(&sha_1_params, &sb_header->signature[0],
        sizeof(struct sb_header_t) - sizeof(sb_header->sha1_header));
    sha_1_finish(&sha_1_params);
    sha_1_output(&sha_1_params, computed_sha1);
    if(memcmp(hdr_sha1, computed_sha1, 20) == 0)
        printf(RED, " Ok\n");
    else
        printf(RED, " Failed\n");
    printf(GREEN, "  Flags: ");
    printf(YELLOW, "%x\n", sb_header->flags);
    printf(GREEN, "  Total file size : ");
    printf(YELLOW, "%ld\n", filesize);

    /* Sizes and offsets */
    printf(BLUE, "Sizes and offsets:\n");
    printf(GREEN, "  # of encryption keys = ");
    printf(YELLOW, "%d\n", sb_header->nr_keys);
    printf(GREEN, "  # of sections = ");
    printf(YELLOW, "%d\n", sb_header->nr_sections);

    /* Versions */
    printf(BLUE, "Versions\n");

    printf(GREEN, "  Random 1: ");
    print_hex(YELLOW, sb_header->rand_pad0, sizeof(sb_header->rand_pad0), true);
    printf(GREEN, "  Random 2: ");
    print_hex(YELLOW, sb_header->rand_pad1, sizeof(sb_header->rand_pad1), true);

    uint64_t micros = sb_header->timestamp;
    time_t seconds = (micros / (uint64_t)1000000L);
    struct tm tm_base;
    memset(&tm_base, 0, sizeof(tm_base));
    /* 2000/1/1 0:00:00 */
    tm_base.tm_mday = 1;
    tm_base.tm_year = 100;
    seconds += mktime(&tm_base);
    struct tm *time = gmtime(&seconds);
    printf(GREEN, "  Creation date/time = ");
    printf(YELLOW, "%s", asctime(time));
    sb_file->timestamp = sb_header->timestamp;

    struct sb_version_t product_ver = sb_header->product_ver;
    fix_version(&product_ver);
    struct sb_version_t component_ver = sb_header->component_ver;
    fix_version(&component_ver);

    memcpy(&sb_file->product_ver, &product_ver, sizeof(product_ver));
    memcpy(&sb_file->component_ver, &component_ver, sizeof(component_ver));

    printf(GREEN, "  Product version   = ");
    printf(YELLOW, "%X.%X.%X\n", product_ver.major, product_ver.minor, product_ver.revision);
    printf(GREEN, "  Component version = ");
    printf(YELLOW, "%X.%X.%X\n", component_ver.major, component_ver.minor, component_ver.revision);

    printf(GREEN, "  Drive tag = ");
    printf(YELLOW, "%x\n", sb_header->drive_tag);
    printf(GREEN, "  First boot tag offset = ");
    printf(YELLOW, "%x\n", sb_header->first_boot_tag_off);
    printf(GREEN, "  First boot section ID = ");
    printf(YELLOW, "0x%08x\n", sb_header->first_boot_sec_id);

    /* encryption cbc-mac */
    byte real_key[16];
    bool valid_key = false; /* false until a matching key was found */

    if(sb_header->nr_keys > 0)
    {
        byte (*cbcmacs)[16] = xmalloc(16 * g_nr_keys);
        printf(BLUE, "Encryption keys\n");
        for(int i = 0; i < g_nr_keys; i++)
        {
            printf(RED, "  Key %d\n", i),
            printf(GREEN, "    Key: ");
            printer.color = YELLOW;
            print_key(&printer, sb_printer, &g_key_array[i], true);
            printf(GREEN, "    CBC-MAC: ");
            /* check it */
            byte zero[16];
            memset(zero, 0, 16);
            int ret = crypto_cbc(buf, NULL, sb_header->header_size + sb_header->nr_sections,
                &g_key_array[i], zero, &cbcmacs[i], 1);
            if(ret != CRYPTO_ERROR_SUCCESS)
            {
                free(cbcmacs);
                fatal(SB_FIRST_CRYPTO_ERROR + ret, "Crypto error: %d", ret);
            }
            print_hex(YELLOW, cbcmacs[i], 16, true);
        }

        printf(BLUE, "DEK\n");
        for(int i = 0; i < sb_header->nr_keys; i++)
        {
            printf(RED, "  Entry %d\n", i);
            uint32_t ofs = sizeof(struct sb_header_t)
                + sizeof(struct sb_section_header_t) * sb_header->nr_sections
                + sizeof(struct sb_key_dictionary_entry_t) * i;
            struct sb_key_dictionary_entry_t *dict_entry =
                (struct sb_key_dictionary_entry_t *)&buf[ofs];
            /* cbc mac */
            printf(GREEN, "    Encrypted key: ");
            print_hex(YELLOW, dict_entry->key, 16, true);
            printf(GREEN, "    CBC-MAC      : ");
            print_hex(YELLOW, dict_entry->hdr_cbc_mac, 16, false);
            /* check it */
            int idx = 0;
            while(idx < g_nr_keys && memcmp(dict_entry->hdr_cbc_mac, cbcmacs[idx], 16) != 0)
                idx++;
            if(idx != g_nr_keys)
            {
                printf(RED, " Match\n");
                /* decrypt */
                byte decrypted_key[16];
                byte iv[16];
                memcpy(iv, buf, 16); /* uses the first 16-bytes of SHA-1 sig as IV */
                int ret = crypto_cbc(dict_entry->key, decrypted_key, 1, &g_key_array[idx], iv, NULL, 0);
                if(ret != CRYPTO_ERROR_SUCCESS)
                {
                    free(cbcmacs);
                    fatal(SB_FIRST_CRYPTO_ERROR + ret, "Crypto error: %d\n", ret);
                }
                printf(GREEN, "    Decrypted key: ");
                print_hex(YELLOW, decrypted_key, 16, false);
                if(valid_key)
                {
                    if(memcmp(real_key, decrypted_key, 16) == 0)
                        printf(RED, " Cross-Check Ok");
                    else
                        printf(RED, " Cross-Check Failed");
                }
                else
                {
                    memcpy(real_key, decrypted_key, 16);
                    valid_key = true;
                }
                printf(OFF, "\n");
            }
            else
                printf(RED, " Don't Match\n");
        }

        free(cbcmacs);

        if(!valid_key)
        {
            if(g_force)
                printf(GREY, "  No valid key found\n");
            else
                fatal(SB_NO_VALID_KEY, "No valid key found\n");
        }

        if(getenv("SB_REAL_KEY") != 0)
        {
            struct crypto_key_t k;
            char *env = getenv("SB_REAL_KEY");
            if(!parse_key(&env, &k) || *env)
                fatal(SB_ERROR, "Invalid SB_REAL_KEY\n");
            memcpy(real_key, k.u.key, 16);
            /* assume the key is valid */
            if(valid_key)
                printf(GREY, "  Overriding real key\n");
            else
                printf(GREY, "  Assuming real key is ok\n");
            valid_key = true;
        }

        printf(RED, "  Summary:\n");
        printf(GREEN, "    Real key: ");
        print_hex(YELLOW, real_key, 16, true);
        printf(GREEN, "    IV      : ");
        print_hex(YELLOW, buf, 16, true);

        sb_file->override_real_key = true;
        memcpy(sb_file->real_key, real_key, 16);
        sb_file->override_crypto_iv = true;
        memcpy(sb_file->crypto_iv, buf, 16);
    }

    /* sections */
    if(!raw_mode)
    {
        sb_file->nr_sections = sb_header->nr_sections;
        sb_file->sections = xmalloc(sb_file->nr_sections * sizeof(struct sb_section_t));
        memset(sb_file->sections, 0, sb_file->nr_sections * sizeof(struct sb_section_t));
        printf(BLUE, "Sections\n");
        for(int i = 0; i < sb_header->nr_sections; i++)
        {
            uint32_t ofs = sb_header->header_size * BLOCK_SIZE + i * sizeof(struct sb_section_header_t);
            struct sb_section_header_t *sec_hdr = (struct sb_section_header_t *)&buf[ofs];

            char name[5];
            sb_fill_section_name(name, sec_hdr->identifier);
            int pos = sec_hdr->offset * BLOCK_SIZE;
            int size = sec_hdr->size * BLOCK_SIZE;
            int data_sec = !(sec_hdr->flags & SECTION_BOOTABLE);
            int encrypted = !(sec_hdr->flags & SECTION_CLEARTEXT) && sb_header->nr_keys > 0;

            printf(GREEN, "  Section ");
            printf(YELLOW, "'%s'\n", name);
            printf(GREEN, "    pos   = ");
            printf(YELLOW, "%8x - %8x\n", pos, pos+size);
            printf(GREEN, "    len   = ");
            printf(YELLOW, "%8x\n", size);
            printf(GREEN, "    flags = ");
            printf(YELLOW, "%8x", sec_hdr->flags);
            if(data_sec)
                printf(RED, "  Data Section");
            else
                printf(RED, "  Boot Section");
            if(encrypted)
                printf(RED, " (Encrypted)");
            printf(OFF, "\n");

            /* skip it if we cannot decrypt it */
            if(encrypted && !valid_key)
            {
                printf(GREY, "  Skipping section content (no valid key)\n");
                continue;
            }

            /* save it */
            byte *sec = xmalloc(size);
            if(encrypted)
                cbc_mac(buf + pos, sec, size / BLOCK_SIZE, real_key, buf, NULL, 0);
            else
                memcpy(sec, buf + pos, size);

            struct sb_section_t *s = read_section(data_sec, sec_hdr->identifier,
                sec, size, "      ", u, cprintf, err);
            if(s)
            {
                s->is_cleartext = !encrypted;
                s->alignment = guess_alignment(pos);
                memcpy(&sb_file->sections[i], s, sizeof(struct sb_section_t));
                free(s);
            }
            else
                fatal(*err, "Error reading section\n");

            free(sec);
        }
    }
    else if(valid_key)
    {
        /* advanced raw mode */
        printf(BLUE, "Commands\n");
        uint32_t offset = sb_header->first_boot_tag_off * BLOCK_SIZE;
        byte iv[16];
        const char *indent = "    ";
        while(true)
        {
            /* restart with IV */
            memcpy(iv, buf, 16);
            byte cmd[BLOCK_SIZE];
            if(sb_header->nr_keys > 0)
                cbc_mac(buf + offset, cmd, 1, real_key, iv, &iv, 0);
            else
                memcpy(cmd, buf + offset, BLOCK_SIZE);
            struct sb_instruction_header_t *hdr = (struct sb_instruction_header_t *)cmd;
            printf(OFF, "%s", indent);
            uint8_t checksum = instruction_checksum(hdr);
            if(checksum != hdr->checksum)
                printf(GREY, "[Bad checksum']");

            if(hdr->opcode == SB_INST_NOP)
            {
                printf(RED, "NOOP\n");
                offset += BLOCK_SIZE;
            }
            else if(hdr->opcode == SB_INST_TAG)
            {
                struct sb_instruction_tag_t *tag = (struct sb_instruction_tag_t *)hdr;
                printf(RED, "BTAG");
                printf(OFF, " | ");
                printf(BLUE, "sec=0x%08x", tag->identifier);
                printf(OFF, " | ");
                printf(GREEN, "cnt=0x%08x", tag->len);
                printf(OFF, " | ");
                printf(YELLOW, "flg=0x%08x", tag->flags);
                if(tag->hdr.flags & SB_INST_LAST_TAG)
                {
                    printf(OFF, " | ");
                    printf(RED, " Last section");
                }
                printf(OFF, "\n");
                offset += sizeof(struct sb_instruction_tag_t);

                char name[5];
                sb_fill_section_name(name, tag->identifier);
                int pos = offset;
                int size = tag->len * BLOCK_SIZE;
                int data_sec = !(tag->flags & SECTION_BOOTABLE);
                int encrypted = !(tag->flags & SECTION_CLEARTEXT) && sb_header->nr_keys > 0;

                printf(GREEN, "%sSection ", indent);
                printf(YELLOW, "'%s'\n", name);
                printf(GREEN, "%s  pos   = ", indent);
                printf(YELLOW, "%8x - %8x\n", pos, pos+size);
                printf(GREEN, "%s  len   = ", indent);
                printf(YELLOW, "%8x\n", size);
                printf(GREEN, "%s  flags = ", indent);
                printf(YELLOW, "%8x", tag->flags);
                if(data_sec)
                    printf(RED, "  Data Section");
                else
                    printf(RED, "  Boot Section");
                if(encrypted)
                    printf(RED, " (Encrypted)");
                printf(OFF, "\n");

                /* save it */
                byte *sec = xmalloc(size);
                if(encrypted)
                    cbc_mac(buf + pos, sec, size / BLOCK_SIZE, real_key, buf, NULL, 0);
                else
                    memcpy(sec, buf + pos, size);

                struct sb_section_t *s = read_section(data_sec, tag->identifier,
                    sec, size, "      ", u, cprintf, err);
                if(s)
                {
                    s->is_cleartext = !encrypted;
                    s->alignment = guess_alignment(pos);
                    sb_file->sections = augment_array(sb_file->sections,
                        sizeof(struct sb_section_t), sb_file->nr_sections++,
                        s, 1);
                    free(s);
                }
                else
                    fatal(*err, "Error reading section\n");
                free(sec);

                /* last one ? */
                if(tag->hdr.flags & SB_INST_LAST_TAG)
                    break;
                offset += size;
            }
            else
            {
                fatal(SB_FORMAT_ERROR, "Unknown instruction %d at address 0x%08lx\n", hdr->opcode, (long)offset);
                break;
            }
        }
    }
    else
    {
        printf(GREY, "Cannot read content in raw mode without a valid key\n");
    }

    /* final signature */
    printf(BLUE, "Final signature:\n");
    byte decrypted_block[32];
    if(sb_header->nr_keys > 0)
    {
        printf(GREEN, "  Encrypted SHA-1:\n");
        byte *encrypted_block = &buf[filesize - 32];
        printf(OFF, "    ");
        print_hex(YELLOW, encrypted_block, 16, true);
        printf(OFF, "    ");
        print_hex(YELLOW, encrypted_block + 16, 16, true);
        /* decrypt it */
        cbc_mac(encrypted_block, decrypted_block, 2, real_key, buf, NULL, 0);
    }
    else
        memcpy(decrypted_block, &buf[filesize - 32], 32);
    printf(GREEN, "  File SHA-1:\n    ");
    print_hex(YELLOW, decrypted_block, 20, false);
    /* check it */
    sha_1_init(&sha_1_params);
    sha_1_update(&sha_1_params, buf, filesize - 32);
    sha_1_finish(&sha_1_params);
    sha_1_output(&sha_1_params, computed_sha1);
    if(memcmp(decrypted_block, computed_sha1, 20) == 0)
        printf(RED, " Ok\n");
    else
    {
        printf(RED, " Failed\n");
        fatal(SB_CHECKSUM_ERROR, "File SHA-1 error\n");
    }

    return sb_file;
    #undef printf
    #undef fatal
    #undef print_hex
}

void sb_free_instruction(struct sb_inst_t inst)
{
    free(inst.padding);
    free(inst.data);
}

void sb_free_section(struct sb_section_t sec)
{
    for(int j = 0; j < sec.nr_insts; j++)
        sb_free_instruction(sec.insts[j]);
    free(sec.insts);
}

void sb_free(struct sb_file_t *file)
{
    if(!file) return;

    for(int i = 0; i < file->nr_sections; i++)
        sb_free_section(file->sections[i]);

    free(file->sections);
    free(file);
}

void sb_dump(struct sb_file_t *file, void *u, generic_printf_t cprintf)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    struct printer_t printer = {.user = u, .cprintf = cprintf, .color = OFF, .error = false };
    #define print_hex(c, p, len, nl) \
        do { printer.color = c; print_hex(&printer, sb_printer, p, len, nl); } while(0)

    #define TREE    RED
    #define HEADER  GREEN
    #define TEXT    YELLOW
    #define TEXT2   BLUE
    #define SEP     OFF

    printf(BLUE, "SB File\n");
    printf(TREE, "+-");
    printf(HEADER, "Version: ");
    printf(TEXT, "1.%d\n", file->minor_version);
    printf(TREE, "+-");
    printf(HEADER, "Flags: ");
    printf(TEXT, "%x\n", file->flags);
    printf(TREE, "+-");
    printf(HEADER, "Drive Tag: ");
    printf(TEXT, "%x\n", file->drive_tag);
    printf(TREE, "+-");
    printf(HEADER, "First Boot Section ID: ");
    char name[5];
    sb_fill_section_name(name, file->first_boot_sec_id);
    printf(TEXT, "%08x (%s)\n", file->first_boot_sec_id, name);
    printf(TREE, "+-");
    printf(HEADER, "Timestamp: ");
    printf(TEXT, "%#llx", file->timestamp);
    {
        uint64_t micros = file->timestamp;
        time_t seconds = (micros / (uint64_t)1000000L);
        struct tm tm_base;
        memset(&tm_base, 0, sizeof(tm_base));
        /* 2000/1/1 0:00:00 */
        tm_base.tm_mday = 1;
        tm_base.tm_year = 100;
        seconds += mktime(&tm_base);
        struct tm *time = gmtime(&seconds);
        char *str = asctime(time);
        str[strlen(str) - 1] = 0;
        printf(TEXT2, " (%s)\n", str);
    }

    if(file->override_real_key)
    {
        printf(TREE, "+-");
        printf(HEADER, "Real key: ");
        print_hex(TEXT, file->real_key, 16, true);
    }
    if(file->override_crypto_iv)
    {
        printf(TREE, "+-");
        printf(HEADER, "IV      : ");
        print_hex(TEXT, file->crypto_iv, 16, true);
    }
    printf(TREE, "+-");
    printf(HEADER, "Product Version: ");
    printf(TEXT, "%X.%X.%X\n", file->product_ver.major, file->product_ver.minor,
        file->product_ver.revision);
    printf(TREE, "+-");
    printf(HEADER, "Component Version: ");
    printf(TEXT, "%X.%X.%X\n", file->component_ver.major, file->component_ver.minor,
        file->component_ver.revision);

    for(int i = 0; i < file->nr_sections; i++)
    {
        struct sb_section_t *sec = &file->sections[i];
        printf(TREE, "+-");
        printf(HEADER, "Section\n");
        printf(TREE,"|  +-");
        printf(HEADER, "Identifier: ");
        sb_fill_section_name(name, sec->identifier);
        printf(TEXT, "%08x (%s)\n", sec->identifier, name);
        printf(TREE, "|  +-");
        printf(HEADER, "Type: ");
        printf(TEXT, "%s (%s)\n", sec->is_data ? "Data Section" : "Boot Section",
            sec->is_cleartext ? "Cleartext" : "Encrypted");
        printf(TREE, "|  +-");
        printf(HEADER, "Alignment: ");
        printf(TEXT, "%d (bytes)\n", sec->alignment);
        printf(TREE, "|  +-");
        printf(HEADER, "Instructions\n");
        for(int j = 0; j < sec->nr_insts; j++)
        {
            struct sb_inst_t *inst = &sec->insts[j];
            printf(TREE, "|  |  +-");
            switch(inst->inst)
            {
                case SB_INST_DATA:
                    printf(HEADER, "DATA");
                    printf(SEP, " | ");
                    printf(TEXT, "size=0x%08x\n", inst->size);
                    break;
                case SB_INST_CALL:
                case SB_INST_JUMP:
                    printf(HEADER, "%s", inst->inst == SB_INST_CALL ? "CALL" : "JUMP");
                    printf(SEP, " | ");
                    printf(TEXT, "addr=0x%08x", inst->addr);
                    printf(SEP, " | ");
                    printf(TEXT2, "arg=0x%08x\n", inst->argument);
                    break;
                case SB_INST_LOAD:
                    printf(HEADER, "LOAD");
                    printf(SEP, " | ");
                    printf(TEXT, "addr=0x%08x", inst->addr);
                    printf(SEP, " | ");
                    printf(TEXT2, "len=0x%08x\n", inst->size);
                    break;
                case SB_INST_FILL:
                    printf(HEADER, "FILL");
                    printf(SEP, " | ");
                    printf(TEXT, "addr=0x%08x", inst->addr);
                    printf(SEP, " | ");
                    printf(TEXT2, "len=0x%08x", inst->size);
                    printf(SEP, " | ");
                    printf(TEXT2, "pattern=0x%08x\n", inst->pattern);
                    break;
                case SB_INST_MODE:
                    printf(HEADER, "MODE");
                    printf(SEP, " | ");
                    printf(TEXT, "mod=0x%08x\n", inst->addr);
                    break;
                case SB_INST_NOP:
                    printf(HEADER, "NOOP\n");
                    break;
                default:
                    printf(GREY, "[Unknown instruction %x]\n", inst->inst);
            }
        }
    }

    #undef printf
    #undef print_hex
}

void sb_get_zero_key(struct crypto_key_t *key)
{
    key->method = CRYPTO_KEY;
    memset(key->u.key, 0, sizeof(key->u.key));
}