summaryrefslogtreecommitdiffstats
path: root/utils/imxtools/sbtools/sb1.c
blob: 6bc4dd8cfac81cce4543096ea7a635a0eebb6c56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2012 Amaury Pouly
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <ctype.h>
#include "misc.h"
#include "crypto.h"
#include "sb1.h"

static int sdram_size_table[] = {2, 8, 16, 32, 64};

#define NR_SDRAM_ENTRIES    (int)(sizeof(sdram_size_table) / sizeof(sdram_size_table[0]))

int sb1_sdram_size_by_index(int index)
{
    if(index < 0 || index >= NR_SDRAM_ENTRIES)
        return -1;
    return sdram_size_table[index];
}

int sb1_sdram_index_by_size(int size)
{
    for(int i = 0; i < NR_SDRAM_ENTRIES; i++)
        if(sdram_size_table[i] == size)
            return i;
    return -1;
}

static uint16_t swap16(uint16_t t)
{
    return (t << 8) | (t >> 8);
}

static void fix_version(struct sb1_version_t *ver)
{
    ver->major = swap16(ver->major);
    ver->minor = swap16(ver->minor);
    ver->revision = swap16(ver->revision);
}

enum sb1_error_t sb1_write_file(struct sb1_file_t *sb, const char *filename)
{
    if(sb->key.method != CRYPTO_XOR_KEY)
        return SB1_NO_VALID_KEY;
    /* compute image size (without userdata) */
    uint32_t image_size = 0;
    image_size += sizeof(struct sb1_header_t);
    for(int i = 0; i < sb->nr_insts; i++)
    {
        switch(sb->insts[i].cmd)
        {
            case SB1_INST_LOAD:
                image_size += 8 + ROUND_UP(sb->insts[i].size, 4);
                break;
            case SB1_INST_FILL:
            case SB1_INST_JUMP:
            case SB1_INST_CALL:
                image_size += 12;
                break;
            case SB1_INST_MODE:
            case SB1_INST_SDRAM:
                image_size += 8;
                break;
            default:
                bugp("Internal error: unknown SB instruction: %#x\n", sb->insts[i].cmd);
        }
    }
    // now take crypto marks and sector size into account:
    // there is one crypto mark per sector, ie 4 bytes for 508 = 512 (sector)
    image_size += 4 * ((image_size + SECTOR_SIZE - 5) / (SECTOR_SIZE - 4));
    image_size = ROUND_UP(image_size, SECTOR_SIZE);

    /* allocate buffer and fill it (ignoring crypto for now) */
    void *buf = xmalloc(image_size);
    struct sb1_header_t *header = buf;
    memset(buf, 0, image_size);
    header->rom_version = sb->rom_version;
    header->image_size = image_size + sb->userdata_size;
    header->header_size = sizeof(struct sb1_header_t);
    header->userdata_offset = sb->userdata ? image_size : 0;
    memcpy(&header->product_ver, &sb->product_ver, sizeof(sb->product_ver));
    fix_version(&header->product_ver);
    memcpy(&header->component_ver, &sb->component_ver, sizeof(sb->component_ver));
    fix_version(&header->component_ver);
    header->drive_tag = sb->drive_tag;
    strncpy((void *)header->signature, "STMP", 4);

    struct sb1_cmd_header_t *cmd = (void *)(header + 1);
    for(int i = 0; i < sb->nr_insts; i++)
    {
        int bytes = 0;
        int size = 0;
        switch(sb->insts[i].cmd)
        {
            case SB1_INST_LOAD:
                bytes = sb->insts[i].size;
                cmd->addr = sb->insts[i].addr;
                memcpy(cmd + 1, sb->insts[i].data, sb->insts[i].size);
                memset((void *)(cmd + 1) + sb->insts[i].size, 0,
                    bytes - sb->insts[i].size);
                break;
            case SB1_INST_FILL:
                bytes = sb->insts[i].size;
                size = 2;
                memcpy(cmd + 1, &sb->insts[i].pattern, 4);
                cmd->addr = sb->insts[i].addr;
                break;
            case SB1_INST_JUMP:
            case SB1_INST_CALL:
                bytes = 4;
                cmd->addr = sb->insts[i].addr;
                memcpy(cmd + 1, &sb->insts[i].argument, 4);
                break;
            case SB1_INST_MODE:
                bytes = 0;
                cmd->addr = sb->insts[i].mode;
                break;
            case SB1_INST_SDRAM:
                bytes = 0;
                cmd->addr = SB1_MK_ADDR_SDRAM(sb->insts[i].sdram.chip_select,
                    sb->insts[i].sdram.size_index);
                break;
            default:
                bugp("Internal error: unknown SB instruction: %#x\n", sb->insts[i].cmd);
        }

        /* handle most common cases */
        if(size == 0)
            size = ROUND_UP(bytes, 4) / 4 + 1;

        cmd->cmd = SB1_MK_CMD(sb->insts[i].cmd, sb->insts[i].datatype,
            bytes, sb->insts[i].critical,
            size);

        cmd = (void *)cmd + 4 + size * 4;
    }

    /* move everything to prepare crypto marks (start at the end !) */
    for(int i = image_size / SECTOR_SIZE - 1; i >= 0; i--)
        memmove(buf + i * SECTOR_SIZE, buf + i * (SECTOR_SIZE - 4), SECTOR_SIZE - 4);

    union xorcrypt_key_t key[2];
    memcpy(key, sb->key.u.xor_key, sizeof(sb->key.u.xor_key));
    void *ptr = header + 1;
    int offset = header->header_size;
    for(unsigned i = 0; i < image_size / SECTOR_SIZE; i++)
    {
        int size = SECTOR_SIZE - 4 - offset;
        uint32_t mark = xor_encrypt(key, ptr, size);
        *(uint32_t *)(ptr + size) = mark;

        ptr += size + 4;
        offset = 0;
    }

    FILE *fd = fopen(filename, "wb");
    if(fd == NULL)
        return SB1_OPEN_ERROR;
    if(fwrite(buf, image_size, 1, fd) != 1)
    {
        free(buf);
        return SB1_WRITE_ERROR;
    }
    free(buf);
    if(sb->userdata)
        fwrite(sb->userdata, sb->userdata_size, 1, fd);
    fclose(fd);

    return SB1_SUCCESS;
}

struct sb1_file_t *sb1_read_file(const char *filename, void *u,
    generic_printf_t cprintf, enum sb1_error_t *err)
{
    return sb1_read_file_ex(filename, 0, -1, u, cprintf, err);
}

struct sb1_file_t *sb1_read_file_ex(const char *filename, size_t offset, size_t size, void *u,
    generic_printf_t cprintf, enum sb1_error_t *err)
{
    #define fatal(e, ...) \
        do { if(err) *err = e; \
            cprintf(u, true, GREY, __VA_ARGS__); \
            free(buf); \
            return NULL; } while(0)

    FILE *f = fopen(filename, "rb");
    void *buf = NULL;
    if(f == NULL)
        fatal(SB1_OPEN_ERROR, "Cannot open file for reading\n");
    fseek(f, 0, SEEK_END);
    size_t read_size = ftell(f);
    fseek(f, offset, SEEK_SET);
    if(size != (size_t)-1)
        read_size = size;
    buf = xmalloc(read_size);
    if(fread(buf, read_size, 1, f) != 1)
    {
        fclose(f);
        fatal(SB1_READ_ERROR, "Cannot read file\n");
    }
    fclose(f);

    struct sb1_file_t *ret = sb1_read_memory(buf, read_size, u, cprintf, err);
    free(buf);
    return ret;

    #undef fatal
}

static const char *sb1_cmd_name(int cmd)
{
    switch(cmd)
    {
        case SB1_INST_LOAD: return "load";
        case SB1_INST_FILL: return "fill";
        case SB1_INST_JUMP: return "jump";
        case SB1_INST_CALL: return "call";
        case SB1_INST_MODE: return "mode";
        case SB1_INST_SDRAM: return "sdram";
        default: return "unknown";
    }
}

static const char *sb1_datatype_name(int cmd)
{
    switch(cmd)
    {
        case SB1_DATATYPE_UINT32: return "uint32";
        case SB1_DATATYPE_UINT16: return "uint16";
        case SB1_DATATYPE_UINT8: return "uint8";
        default: return "unknown";
    }
}

/* Quick and dirty way to check a key is valid.
 * We don't do any form of format checking because we are trying to bruteforce
 * the key anyway. Assume buffer is of size SECTOR_SIZE */
bool sb1_is_key_valid_fast(void *buffer, union xorcrypt_key_t _key[2])
{
    struct sb1_header_t *header = (struct sb1_header_t *)buffer;
    union xorcrypt_key_t key[2];

    uint8_t sector[SECTOR_SIZE];
    /* copy key and data because it's modified by the crypto code */
    memcpy(key, _key, sizeof(key));
    memcpy(sector, header + 1, SECTOR_SIZE - header->header_size);
    /* try to decrypt the first sector */
    uint32_t mark = xor_decrypt(key, sector, SECTOR_SIZE - 4 - header->header_size);
    /* copy key again it's modified by the crypto code */
    return mark == *(uint32_t *)&sector[SECTOR_SIZE - 4 - header->header_size];
}

bool sb1_brute_force(const char *filename, void *u, generic_printf_t cprintf,
    enum sb1_error_t *err, struct crypto_key_t *key)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    uint8_t sector[SECTOR_SIZE];
    FILE *f = fopen(filename, "rb");
    if(f == NULL)
    {
        printf("Cannot open file '%s' for reading: %m\n", filename);
        *err = SB1_OPEN_ERROR;
        return false;
    }
    if(fread(sector, sizeof(sector), 1, f) != 1)
    {
        printf("Cannot read file '%s': %m\n", filename);
        *err = SB1_READ_ERROR;
        fclose(f);
        return false;
    }
    fclose(f);

    printf(BLUE, "Brute forcing key...\n");
    time_t start_time = time(NULL);
    uint32_t laserfuse[3] = {0, 0, 0};
    unsigned last_print = 0;
    do
    {
        for(int i = 0; i < 0x10000; i++)
        {
            laserfuse[2] = (i & 0xff00) << 8 | (i & 0xff);
            xor_generate_key(laserfuse, key->u.xor_key);
            if(g_debug)
            {
                printf(GREEN, "Trying key");
                printf(GREEN, "[");
                printf(RED, "%08x", laserfuse[0]);
                printf(GREEN, ",");
                printf(RED, "%08x", laserfuse[1]);
                printf(GREEN, ",");
                printf(RED, "%08x", laserfuse[2]);
                printf(GREEN, "]:");
                for(int j = 0; j < 32; j++)
                    printf(YELLOW, " %08x", key->u.xor_key[j / 16].k[j % 16]);
            }
            if(sb1_is_key_valid_fast(sector, key->u.xor_key))
            {
                if(g_debug)
                    printf(RED, " Ok\n");
                return true;
            }
            else
            {
                if(g_debug)
                    printf(RED, " No\n");
            }
        }
        laserfuse[0]++;

        if(laserfuse[0] / 1000 != last_print)
        {
            time_t cur_time = time(NULL);
            float key_per_sec = laserfuse[0] / (float)(cur_time - start_time);
            float tot = 0x1000000LL / key_per_sec;
            time_t eta_time = start_time + tot;

            printf(YELLOW, "%llu", laserfuse[0] * 0x10000LL);
            printf(GREEN, " out of ");
            printf(BLUE, "%llu", 0x1000000LL * 0x10000LL);
            printf(GREEN, " tested (");
            printf(RED, "%f%%", laserfuse[0] / (float)0x1000000LL * 100.0);
            printf(GREEN, "), ");
            printf(YELLOW, "%d", cur_time - start_time);
            printf(GREEN, " seconds elapsed, ");
            printf(BLUE, "%d", eta_time - cur_time);
            printf(GREEN, " seconds remaining, [");
            printf(RED, "%f", key_per_sec);
            printf(GREEN, " keys/s], ETA ");
            printf(YELLOW, "%s", ctime(&eta_time));
            last_print = laserfuse[0] / 1000;
        }
    }while(laserfuse[0] != 0);

    *err = SB1_NO_VALID_KEY;
    return false;
    #undef printf
}

struct sb1_file_t *sb1_read_memory(void *_buf, size_t filesize, void *u,
    generic_printf_t cprintf, enum sb1_error_t *err)
{
    struct sb1_file_t *file = NULL;
    uint8_t *buf = _buf;

    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    #define fatal(e, ...) \
        do { if(err) *err = e; \
            cprintf(u, true, GREY, __VA_ARGS__); \
            sb1_free(file); \
            return NULL; } while(0)
    #define print_hex(c, p, len, nl) \
        do { printf(c, ""); print_hex(p, len, nl); } while(0)

    file = xmalloc(sizeof(struct sb1_file_t));
    memset(file, 0, sizeof(struct sb1_file_t));
    struct sb1_header_t *header = (struct sb1_header_t *)buf;

    if(memcmp(header->signature, "STMP", 4) != 0)
        fatal(SB1_FORMAT_ERROR, "Bad signature\n");
    if(header->image_size > filesize)
        fatal(SB1_FORMAT_ERROR, "File too small (should be at least %d bytes)\n",
            header->image_size);
    if(header->header_size != sizeof(struct sb1_header_t))
        fatal(SB1_FORMAT_ERROR, "Bad header size\n");

    printf(BLUE, "Basic info:\n");
    printf(GREEN, "  ROM version: ");
    printf(YELLOW, "%x\n", header->rom_version);
    printf(GREEN, "  Userdata offset: ");
    printf(YELLOW, "%x\n", header->userdata_offset);
    printf(GREEN, "  Pad: ");
    printf(YELLOW, "%x\n", header->pad2);

    struct sb1_version_t product_ver = header->product_ver;
    fix_version(&product_ver);
    struct sb1_version_t component_ver = header->component_ver;
    fix_version(&component_ver);

    printf(GREEN, "  Product version: ");
    printf(YELLOW, "%X.%X.%X\n", product_ver.major, product_ver.minor, product_ver.revision);
    printf(GREEN, "  Component version: ");
    printf(YELLOW, "%X.%X.%X\n", component_ver.major, component_ver.minor, component_ver.revision);

    printf(GREEN, "  Drive tag: ");
    printf(YELLOW, "%x\n", header->drive_tag);

    /* copy rom version, padding and drive tag */
    /* copy versions */
    memcpy(&file->product_ver, &product_ver, sizeof(product_ver));
    memcpy(&file->component_ver, &component_ver, sizeof(component_ver));
    file->rom_version = header->rom_version;
    file->pad2 = header->pad2;
    file->drive_tag = header->drive_tag;

    /* reduce size w.r.t to userdata part */
    uint32_t userdata_size = 0;
    if(header->userdata_offset != 0)
    {
        userdata_size = header->image_size - header->userdata_offset;
        header->image_size -= userdata_size;
    }

    if(header->image_size % SECTOR_SIZE)
    {
        if(!g_force)
            printf(GREY, "Image size is not a multiple of sector size\n");
        else
            fatal(SB1_FORMAT_ERROR, "Image size is not a multiple of sector size\n");
    }

    /* find key */
    union xorcrypt_key_t key[2];
    memset(key, 0, sizeof(key));
    bool valid_key = false;
    uint8_t sector[SECTOR_SIZE];

    for(int i = 0; i < g_nr_keys; i++)
    {
        if(!g_key_array[i].method == CRYPTO_XOR_KEY)
            continue;
        /* copy key and data because it's modified by the crypto code */
        memcpy(key, g_key_array[i].u.xor_key, sizeof(key));
        memcpy(sector, header + 1, SECTOR_SIZE - header->header_size);
        /* try to decrypt the first sector */
        uint32_t mark = xor_decrypt(key, sector, SECTOR_SIZE - 4 - header->header_size);
        /* copy key again it's modified by the crypto code */
        memcpy(key, g_key_array[i].u.xor_key, sizeof(key));
        if(mark != *(uint32_t *)&sector[SECTOR_SIZE - 4 - header->header_size])
            continue;
        /* found ! */
        valid_key = true;
        break;
    }

    if(!valid_key)
    {
        if(!g_force)
            fatal(SB1_NO_VALID_KEY, "No valid key found\n");
        printf(GREY, "No valid key found: forced to continue but this will fail\n");
    }

    printf(BLUE, "Crypto\n");
    for(int i = 0; i < 2; i++)
    {
        printf(RED, "  Key %d\n", i);
        printf(OFF, "    ");
        for(int j = 0; j < 64; j++)
        {
            printf(YELLOW, "%02x ", key[i].key[j]);
            if((j + 1) % 16 == 0)
            {
                printf(OFF, "\n");
                if(j + 1 != 64)
                    printf(OFF, "    ");
            }
        }
    }

    memcpy(file->key.u.xor_key, key, sizeof(key));

    /* decrypt image in-place (and removing crypto markers) */
    void *ptr = header + 1;
    void *copy_ptr = header + 1;
    int offset = header->header_size;
    for(unsigned i = 0; i < header->image_size / SECTOR_SIZE; i++)
    {
        int size = SECTOR_SIZE - 4 - offset;
        uint32_t mark = xor_decrypt(key, ptr, size);
        if(mark != *(uint32_t *)(ptr + size) && !g_force)
            fatal(SB1_CHECKSUM_ERROR, "Crypto mark mismatch\n");
        memmove(copy_ptr, ptr, size);

        ptr += size + 4;
        copy_ptr += size;
        offset = 0;
    }

    /* reduce image size given the removed marks */
    header->image_size -= header->image_size / SECTOR_SIZE;

    printf(BLUE, "Commands\n");
    struct sb1_cmd_header_t *cmd = (void *)(header + 1);
    while((void *)cmd < (void *)header + header->image_size)
    {
        printf(GREEN, "  Command");
        printf(YELLOW, " %#x\n", cmd->cmd);
        printf(YELLOW, "    Size:");
        printf(RED, " %#x\n", SB1_CMD_SIZE(cmd->cmd));
        printf(YELLOW, "    Critical:");
        printf(RED, " %d\n", SB1_CMD_CRITICAL(cmd->cmd));
        printf(YELLOW, "    Data Type:");
        printf(RED, " %#x ", SB1_CMD_DATATYPE(cmd->cmd));
        printf(GREEN, "(%s)\n", sb1_datatype_name(SB1_CMD_DATATYPE(cmd->cmd)));
        printf(YELLOW, "    Bytes:");
        printf(RED, " %#x\n", SB1_CMD_BYTES(cmd->cmd));
        printf(YELLOW, "    Boot:");
        printf(RED, " %#x ", SB1_CMD_BOOT(cmd->cmd));
        printf(GREEN, "(%s)\n", sb1_cmd_name(SB1_CMD_BOOT(cmd->cmd)));

        /* copy command */
        struct sb1_inst_t inst;
        memset(&inst, 0, sizeof(inst));
        inst.cmd = SB1_CMD_BOOT(cmd->cmd);
        inst.critical = SB1_CMD_CRITICAL(cmd->cmd);
        inst.datatype = SB1_CMD_DATATYPE(cmd->cmd);
        inst.size = SB1_CMD_BYTES(cmd->cmd);

        switch(SB1_CMD_BOOT(cmd->cmd))
        {
            case SB1_INST_SDRAM:
                inst.sdram.chip_select = SB1_ADDR_SDRAM_CS(cmd->addr);
                inst.sdram.size_index = SB1_ADDR_SDRAM_SZ(cmd->addr);
                printf(YELLOW, "    Ram:");
                printf(RED, " %#x", inst.addr);
                printf(GREEN, " (Chip Select=%d, Size=%d)\n", SB1_ADDR_SDRAM_CS(cmd->addr),
                    sb1_sdram_size_by_index(SB1_ADDR_SDRAM_SZ(cmd->addr)));
                break;
            case SB1_INST_MODE:
                inst.mode = cmd->addr;
                printf(YELLOW, "    Mode:");
                printf(RED, " %#x\n", inst.mode);
                break;
            case SB1_INST_LOAD:
                inst.data = malloc(inst.size);
                memcpy(inst.data, cmd + 1, inst.size);
                inst.addr = cmd->addr;
                printf(YELLOW, "    Addr:");
                printf(RED, " %#x\n", inst.addr);
                break;
            case SB1_INST_FILL:
                inst.addr = cmd->addr;
                inst.pattern = *(uint32_t *)(cmd + 1);
                printf(YELLOW, "    Addr:");
                printf(RED, " %#x\n", cmd->addr);
                printf(YELLOW, "    Pattern:");
                printf(RED, " %#x\n", inst.pattern);
                break;
            case SB1_INST_CALL:
            case SB1_INST_JUMP:
                inst.addr = cmd->addr;
                inst.argument = *(uint32_t *)(cmd + 1);
                printf(YELLOW, "    Addr:");
                printf(RED, " %#x\n", cmd->addr);
                printf(YELLOW, "    Argument:");
                printf(RED, " %#x\n", inst.argument);
                break;
            default:
                printf(GREY, "WARNING: unknown SB command !\n");
                break;
        }

        file->insts = augment_array(file->insts, sizeof(inst), file->nr_insts, &inst, 1);
        file->nr_insts++;

        /* last instruction ? */
        if(SB1_CMD_BOOT(cmd->cmd) == SB1_INST_JUMP ||
                SB1_CMD_BOOT(cmd->cmd) == SB1_INST_MODE)
            break;

        cmd = (void *)cmd + 4 + 4 * SB1_CMD_SIZE(cmd->cmd);
    }

    /* copy userdata */
    file->userdata_size = userdata_size;
    if(userdata_size > 0)
    {
        file->userdata = malloc(userdata_size);
        memcpy(file->userdata, (void *)header + header->userdata_offset, userdata_size);
    }

    return file;
    #undef printf
    #undef fatal
    #undef print_hex
}

void sb1_free(struct sb1_file_t *file)
{
    if(!file) return;

    for(int i = 0; i < file->nr_insts; i++)
        free(file->insts[i].data);
    free(file->insts);
    free(file->userdata);
    free(file);
}

void sb1_dump(struct sb1_file_t *file, void *u, generic_printf_t cprintf)
{
    #define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
    #define print_hex(c, p, len, nl) \
        do { printf(c, ""); print_hex(p, len, nl); } while(0)

    #define TREE    RED
    #define HEADER  GREEN
    #define TEXT    YELLOW
    #define TEXT2   BLUE
    #define TEXT3   RED
    #define SEP     OFF

    printf(BLUE, "SB1 File\n");
    printf(TREE, "+-");
    printf(HEADER, "Rom Ver: ");
    printf(TEXT, "%x\n", file->rom_version);
    printf(TREE, "+-");
    printf(HEADER, "Pad: ");
    printf(TEXT, "%x\n", file->pad2);
    printf(TREE, "+-");
    printf(HEADER, "Drive Tag: ");
    printf(TEXT, "%x\n", file->drive_tag);
    printf(TREE, "+-");
    printf(HEADER, "Product Version: ");
    printf(TEXT, "%X.%X.%X\n", file->product_ver.major, file->product_ver.minor,
        file->product_ver.revision);
    printf(TREE, "+-");
    printf(HEADER, "Component Version: ");
    printf(TEXT, "%X.%X.%X\n", file->component_ver.major, file->component_ver.minor,
        file->component_ver.revision);

    for(int j = 0; j < file->nr_insts; j++)
    {
        struct sb1_inst_t *inst = &file->insts[j];
        printf(TREE, "+-");
        printf(HEADER, "Command\n");
        printf(TREE, "|  +-");
        switch(inst->cmd)
        {
            case SB1_INST_CALL:
            case SB1_INST_JUMP:
                printf(HEADER, "%s", inst->cmd == SB1_INST_CALL ? "CALL" : "JUMP");
                printf(SEP, " | ");
                printf(TEXT3, "crit=%d", inst->critical);
                printf(SEP, " | ");
                printf(TEXT, "addr=0x%08x", inst->addr);
                printf(SEP, " | ");
                printf(TEXT2, "arg=0x%08x\n", inst->argument);
                break;
            case SB1_INST_LOAD:
                printf(HEADER, "LOAD");
                printf(SEP, " | ");
                printf(TEXT3, "crit=%d", inst->critical);
                printf(SEP, " | ");
                printf(TEXT, "addr=0x%08x", inst->addr);
                printf(SEP, " | ");
                printf(TEXT2, "len=0x%08x\n", inst->size);
                break;
            case SB1_INST_FILL:
                printf(HEADER, "FILL");
                printf(SEP, " | ");
                printf(TEXT3, "crit=%d", inst->critical);
                printf(SEP, " | ");
                printf(TEXT, "addr=0x%08x", inst->addr);
                printf(SEP, " | ");
                printf(TEXT2, "len=0x%08x", inst->size);
                printf(SEP, " | ");
                printf(TEXT2, "pattern=0x%08x\n", inst->pattern);
                break;
            case SB1_INST_MODE:
                printf(HEADER, "MODE");
                printf(SEP, " | ");
                printf(TEXT3, "crit=%d", inst->critical);
                printf(SEP, " | ");
                printf(TEXT, "mode=0x%08x\n", inst->addr);
                break;
            case SB1_INST_SDRAM:
                printf(HEADER, "SRAM");
                printf(SEP, " | ");
                printf(TEXT3, "crit=%d", inst->critical);
                printf(SEP, " | ");
                printf(TEXT, "chip_select=%d", inst->sdram.chip_select);
                printf(SEP, " | ");
                printf(TEXT2, "chip_size=%d\n", sb1_sdram_size_by_index(inst->sdram.size_index));
                break;
            default:
                printf(GREY, "[Unknown instruction %x]\n", inst->cmd);
                break;
        }
    }

    #undef printf
    #undef print_hex
}

static struct crypto_key_t g_default_xor_key =
{
    .method = CRYPTO_XOR_KEY,
    .u.xor_key =
    {
        {.k = {0x67ECAEF6, 0xB31FB961, 0x118A9F4C, 0xA32A97DA,
        0x6CC39617, 0x5BC00314, 0x9D430685, 0x4D7DB502,
        0xA347685E, 0x3C87E86C, 0x8987AAA0, 0x24B78EF1,
        0x893B9605, 0x9BB8C2BE, 0x6D9544E2, 0x375B525C}},
        {.k = {0x3F424704, 0x53B5A331, 0x6AD345A5, 0x20DCEC51,
        0x743C8D3B, 0x444B3792, 0x0AF429569, 0xB7EE1111,
        0x583BF768, 0x9683BF9A, 0x0B032D799, 0xFE4E78ED,
        0xF20D08C2, 0xFA0BE4A2, 0x4D89C317, 0x887B2D6F}}
    }
};

void sb1_get_default_key(struct crypto_key_t *key)
{
    memcpy(key, &g_default_xor_key, sizeof(g_default_xor_key));
    /* decrypt the xor key which is xor'ed */
    for(int i = 0; i < 2; i++)
        for(int j = 0; j < 16; j++)
            key->u.xor_key[i].k[j] ^= 0xaa55aa55;
}